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1. INTRODUCTION

1.1 Background of the Present Effort

Design optimization is an issue of continuing importance in a variety of
aeronautical applications, including rotorcraft performance analysis. Developing an
effective compromise design that can meet the requirements of rotor performance in
hover and in climb or high speed axial flight is an exceptionally difficult problem. Hover
itself remains an important design point because of the critical role it plays in sizing the
engine and establishing rotor disk loading and the blade twist distribution. Moreover, the

axial flight condition has become even more critical, since the success of present and
proposed tiltrotor designs depends on efficient performance of lifting rotors in propeller
mode. The complexity of the problem increases still further when structural and dynamic
constraints are considered. The primary objective of this effort was to develop a
comprehensive design optimization capability suitable for analyzing both hover and axial
flight conditions in modem helicopter and tiltrotor configurations.

An essential prerequisite for a practical and effective optimization analysis is for a
refined, flexible, and well-validated hover performance code to be used as the basis of the

performance calculation. The task of developing computational tools to reliably analyze
rotor performance has been under study for many years. Much of the work in this area
has centered around efforts to approximate crucial rotor wake effects through
generalizations of vortex wake trajectories from empirical data (Refs. 1 and 2) or through
interpolations between 'representative' free vortex computations (Ref. 3). It has long been
clear that the preferred approach is the explicit computation of full free wake vortex
flows; this approach avoids reliance on particular data sets and yields force-free,

physically valid wakes which enhance confidence in performance predictions. The next
section will summarize previous work in the development of free wake analyses as well
as describe the formulation implemented hvm.

A second requirement for a successful optimization analysis is that it must
efficiently evaluate candidate designs with minimal resort to repeated calls of the
computationally expensive open-loop performance analysis. It is in this regard that the
influence Coefficient approach proves highly advantageous. An analysis incorporating
this approach, designated EHPIC (Evaluation of Hover Performance using Influence
Coefficients), has proved to be the ideal foundation for a free wake optimization routine,
since its fo.rmula.tion permits straightforward evaluation and exploitation of information
on the gradients m performance due to design changes. The results presented below will
show how an optimization analysis based on influence coefficients can perform efficient
exploration of design space without sacrificing the refined physical model associated with
free wake treatments.

Previous reports and papers (Refs. 4 and 5) have described exploratory work on
this topic, involving computations of improved performance on representative rotor
configurations using a loose coupling of the EI-IPIC code to a linear optimization
analysis. While these demonstration calculations were encouraging evidence of the
feasibility of developing an optimization code based on EHPIC, they were restricted to
using twist as a design variable and lacked the flexibility to realistically constrain the
evolving designs. It was thus recognized that considerable additional development and
validation work was required to implement a useful, practical optimization code.



References 6-9 summarize extensive performance validation efforts undertaken
with the EHPIC code. These references describe correlation studies involving over thirty
separate rotor configurations, including tiltrotor designs, conventional main rotors, and
tail rotors. In general, these studies achieved quite accurate correlation with _imal
resort to "dialing" of model parameters. This work in OGE (Out of Ground Effect) hover
calculations has been supplemented by enhancement of the original EHPIC (Mod 0.0)
code (Ref. 9) to include a ground plane to allow IGE (In Ground Effec0 calculations
(Ref. I0). Validation of IGE performance and wake geometry predictions discussed in
References 10 and 11 has also been encouraging.

Thus, the underlying EHPIC hover model has undergone substantial testing and
refinement since the original work described in Reference 9, but still other improvements
were judged desirable to improve the flexibility and physical fidelity of the code. Many
of these new features are described in Sections 2, with additional details on
implementation and use provided in Reference 12. The new features of the model
include: a provision for lift limitation due to airfoil stall; direct calculation of wake-
induced velocity at specified points; refinements in vortex core modeling; research on
vortex/blade encounter loading; and significant CPU reduction through the streamlining
of influence coefficient evaluations. Sections 3 and 4 describe still more substantial
improvements to the baseline EHPIC analysis, including a provision for high-resolution
roll-up of tip vortices and computation of static structural deflection. Later sections
directly take up the topic of the optimization algorithms implemented as well as the
calculations undertaken to validate the functionality and capabilities of these algorithms.

1.2 Review of Previous Work in Rotor Design Optimization

There exists a large body of literature on numerical optimization procedures.
Recent reviews of aerospace- and rotorcraft-ofiented applications of numerical
optimization give evidence of the maturity of these techniques (Refs. 13-14). As for
particular applications, Moffitt and Bissell (Ref. 15) undertook a general examination of
rotor airloads in both hover and forward flight using a prescribed wake aerodynamic
model with circulation coupling. Their aim was to find airload distributions that led to a
minimum power required for a specified thrust. Nagashima and Nakanishi (Ref. 16)
studied hover performance optimization for coaxial rotors, employing both a closed-form
"generalized momentum" model of the wake as well as a simplified free wake model
based on vortex rings. Walsh, Bingham, and Riley (Ref. 17) and Chattapodhyay, Walsh
and Riley (Ref. 18) describe the assembly of several existing aerodynamic and vehicle
aim models and a commonly available optimization routine (CONMIN) into a broadly
applicable blade design optimizer for hover and forward flight. This work is part of a
larger effort to develop a multidisciplinary design optimization for rotorcraft (Adelman
and Mantay, Ref. 19) which has been directed at achieving appropriate compromise
designs across a wide range of performance measures. This in turn has been
supplemented by more specialized studies performed by Chattapodhyay and McCarthy
(Ref. 20).

Nearly all of the studies mentioned above rely on qualitatively similar approaches;
an objective function (e.g., vibratory load levels or hover figure of merit) is defined along
with a set of design parameters to be varied. Limitations are placed on the variations
allowed in these quantities in the form of inequality constraints and initial estimates of
parameter values to meet the specified performance levels are made. Using
approximations to the actual nonlinear relations governing the objective function, the
design parameters are varied in the vicinity of the initial estimate to reach the desired
level of this function. The more recent work, (Refs.19 and 20), has expanded the scope
of such methods to address multidisciplinary optimization efforts involving the

2



simultaneousmaximizationor minimizationof complexobjectivefunctionscomposedof
weighted measures of performance (e.g. hover figure of merit and blade dynamic
frequency placement, or climb power and noise signature).

All this work represents a broad range of accomplishment in design optimization,
although as a general rule these efforts have featured simplified aerodynamic models in
their performance calculations (e.g., strip theory and prescribed wake models). This
doubtless has been a response to the need to provide designers with computationally
efficient tools; however, now that more and more computational power is becoming
routinely available, it is appropriate to employ more advanced methods. Simplified
models lack the generality, accuracy and adaptability of the more advanced treatments
now available and so their use in an optimization analysis undermines confidence in the
true optimality of the designs computed. The advantage of the current effort is that the
advanced free wake analysis embodied in the EHPIC code can be utilized to produce a
more comprehensive, reliable and flexible optimization treatment. Furthermore, EHPIC's
influence coefficient approach helps ameliorate potential increases in CPU time because
in the course of its own solution it calculates many of the derivatives required by the
optimization algorithm.

3



2. HOVER PERFORMANCE PREDICTIONS USING A FREE WAKE ANALYSIS

This section recapitulates the development of the EI-IPIC code and introduces the

important concepts that were carried over into the current effort. The evolution of the
EHPIC code from the Mod 0.0 version originally delivered to NASA in 1987 to the later
Mod 1.0 and Mod 2.0 versions is summarized. Also described in this section are the

major modifications that were incorporated in EHPIC/HERO to enhance performance and
to adapt the EHPIC analysis to the tasks associated with design optimization.

2.1 The Influence Coefficient Approach to Free Wake Analysis

Early efforts to develop free wake hover models using time domain calculations
(Refs. 21 and 22) were hampered by long computation time and poor (or nonexistent)

convergence due to the inherent instability of the hovering rotor wake (Fig. 2-1).
Reference 9 describes the development of an influence coefficient relaxation approach to

the free wake problem that determines the wake geometry while circumventing the
convergence problems associated with the time-marching simulations. As mentioned
previously, the EHPIC code has produced accurate performance predictions for a wide
variety of rotor systems in hover, and has proved to be flexible and robust. EHPIC also
includes curved vortex elements (Reference 23) in the model of the rotor wake to enhance

both the efficiency and the accuracy of the computation.

The general objective of a free wake hover analysis is to find the wake geometry
that satisfies two conditions: first, that the wake filaments are in free motion; and second,
that the flow tangeney condition is satisfied on the blade. To achieve the free motion
condition, the wake filament trajectories must be tangent to the local velocity vector
evaluated on the filament when viewed in a rotating reference frame, i.e., there will be no
crossflow velocity components at any point on the filaments under force free conditions.
The coupled free wake/lifting surface hover analysis in EHPIC proceeds by first making

an initial guess for the blade loads and the wake geometry. This initial guess will not, in
general, satisfy the required conditions, and so must be adjusted in a succession of
solution steps. To accomplish this, the independent variables in the problem (the bound
circulation at stations along the blade and the vortex wake position coordinates) are

systematically perturbed, and the effect of these perturbations on the dependent variables
(the downwash on the blade and erossflow velocities in the wake) are summed and

formed into influence coefficients (Fig. 2-2). These coefficients allow the construction of
a set of simultaneous linear equations in matrix form which predict the change in
dependent variables due to the changes in independent variables. The coefficient array so
formed can be used to null the erossflow and downwash velocities by inverting it and
multiplying it by the vector of residual velocities. The influence coefficient array appears
in a linear system of equations in the following form:

(2-1)

The independent variables on the right hand side are, respectively, the position

perturbations and bound circulation perturbations from the initial state, while the
dependent variables on the left hand side represent the crossflow velocities in the wake
and the downwash at the blade.

4



Figure 2-1. Typical form of time domain instabilities observed in free vortex

calculations of hovering rotor wakes (dashed line); solid line
represents the idealized contracting wake solution for this one-bladed
rotor.

I

• Rotor BI

Cross flow Planes _ "_'__-__._ _

Displaced--/",, ) _.t,?,._, _ O,r
\ / T'I "--... F_¢

Initia I---.-j/"\_/\ II _'","--. ._J
:_? _ O. II" "

is_loc_dVorte_qj.,_/_. I \
__ _ " Initial Vortex
j,l i fi,_. _ It

• "\I Col location
" Points

Figure 2-2. Method of displacing a vortex to eliminate velocity components in
planes normal to the vortex curve. Equilibrium state is zero
crossflow velocity in every plane.
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These variables, of course, represent perturbations about an initial guess, which in
general features some nonzero residual velocities on the left hand side. Were the problem
purely linear, inverting this matrix and multiplying it by the residual velocity vector
would yield a vector of wake displacements and circulation perturbations that would
exactly null the velocities in question, i.e.,

(2-2)

In general, the process must be repeated due to the inherent nonlinearity of the problem,
and only small fractions of the residual velocities are nuUed in each iteration. In practice,
this approach has been found to have robust convergence properties, despite the
complexity of the relaxation procedure. For most rotor configurations with up to ten
wake filaments per blade, convergence is achieved after ten to twenty relaxation steps
(Fig. 2-3). These solutions, while they are self-preserving vortex flows, can be shown to
possess time-domain instabilities that preclude the success of time-marching calculations
(Ref. 9).

In the EHPIC code, the wake vortex filaments are represented by curved vortex
elements which provide an efficient means to perform the Biot-Savart integrations
necessary for the evaluation of wake-induced velocities (Fig. 2-4). A vortex lattice/lifting
surface analysis is used to evaluate the thrust and induced drag on the rotor. An array of
thin lifting vortex quadrilaterals are used to model each blade, and the relaxation solution
produces a vector of bound circulation values that null the downwash at the control point
at the center of each qua& Using the local values of free slxeam and induced velocity, the
Joukowski law is applied to find the force and moment on each lattice element. This
procedure also produces a spanwise lift coefficient distribution that is used, along with
the local Mach number, in a look-up scheme that provides the profile drag coefficient of
that section.

One advantage of the influence coefficient approach is that it finds the physically
correct, self-preserving wake geometry without the instabilities and consequent lack of
convergence of earlier methods that convected the wake in a time-marching manner.
Furthermore, once a converged solution has been obtained, adjacent solutions that are
almost linearly close along a performance curve are readily obtained with only a few
relaxation steps, eliminating the need to wash out the transients occurring in time-
marching schemes.

2.2 Evolution of the EHPIC Code

The EHPIC code has evolved considerably since the original work summarized in
Reference 9. This initial effort was directly purely at obtaining performance solutions for
isolated rotors operating out of ground effect, and the resulting code was designated the
Mod 0.0 version. Subsequent development work sponsored by NASA to upgrade the
original code led to three major modifications: implementation of a ground plane model
to allow for computations in ground effect; incorporation of an eigenanalysis package to
permit evaluation of the linearized time domain stability of converged configurations; and
substantial revision of the original coding to reduce the code's CPU requirements on
vector processing computers. This version was designated Mod 1.0, and its development
is described in detail in Reference 10.

6



Figure 2-3. Typical converged rotor wake configuration for the EHPIC code (six

flee wake filaments trailing from each blade). (Wake from only one
blade shown.)

/
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EVALUATION

Figure 2-4. Typical arrangement of elements used to discrcfizc trailing vortex
filaments for wake-on-wake velocity calculations. The formulation

of parabolic Basic Curved Vortex Elements (BCVE's) and Sclf-
Induction Vortex Elements (SIVE's) given in Reference 23.



Thegroundplanemodelimplemented in Mod 1.0 consists of an image system of
vortices located symmetrically opposite the free vortex elements in the physical wake. A

prescribed wake model completes the transition from the freely distorting filaments to an
efficient far wake representation. References I0 and 11 both contain discussions of wake

geometry and performance resultsobtained with the ground effectmodel.

This vectorized EHPIC Mod 1.0 variant achieved roughly a factor of four in

computation time reduction over Mocl 0.0 when implemented on a CRAY Y-MP.
Additional computation time reductions - independent of computational platform - have
been realized in a MOd 2.0 version developed under an internal effort at Continuum

Dynamics. This version incorporates a broad range of efficiency enhancements,
primarily limiting the frequency of updates of the influence coefficient array. MOd 2.0
contains the same physical model as Mod 1.0, but can run three to four times faster on the

same machine. The speed-up.in Mod 2.0 is independent of (serial or vector) platform, so
a Mod 2.0 calculation operaung on a CRAY Y-MP or similar vector processor can run
over an order of magnitude faster than the original EI-IPIC MOd 0.0.

The MOd 2.0 variant was the starting point for the development of EHPIC/HERO
described here. (Unless otherwise specified, any subsequent references to 'the EHPIC
code' should be understood to refer to Mod 2.0). During the evolution of the

EHPIC/HERO code from the baseline EHPIC analysis, a variety of extensions and

revisions were incorporated independent of any optimization functions to relieve earlier
limitations on the analysis and effect improvements in the consistency of the model, or
simply to make the analysis more convenient to use. The remainder of this section
describes the implementation of the most significant of these modifications, while
discussion of two major extensions - the calculation of tip vortex roll-up and the
implementation of a structural deformation model -is reserved for subsequent sections.

2.3 Calculation of Aerodynamic Loading

2.3. I Vortex lattice model

In EHPIC and EHPIC/I-IERO, thrust and induced torque are computed using a
vortex lattice formulation similar to that described in Reference 24. The present model

allows substantial flexibility in the specification of the blade's planform so that complex

designs may be accommodated. Currently, the lattice can be divided into as many as
fifteen different regions, with separate linear distributions of twist, taper, and sweep
within each. The spacing of the quadrilaterals in a vortex lattice analysis is an important
consideration, as is discussed in Reference 25. The judicious selection of the density,

spacing, and orientation of the quadrilaterals can considerably enhance the efficiency and
rate of convergence of the blade loading. The current analysis has been provided with

sufficient flexibility to arrange essentially arbitrary chordwise and spanwise distributions
of lattice elements though the control points are always assumed to lie at the geometric

center of the quadrilateral. All of the calculations discussed in this report feature uniform
spacing of vortex quadrilaterals both in the chordwise and spanwise directions, unless
otherwise noted. (Note: A special semicircle cosine spacing option similar to the l_,an

Type-B model discussed in Ref. 25 is currently available within the EHPIC/HERO code.
The description of the vortex lattice structure in this section does not apply to this option.
The semicircle spacing option was not used for any of the results presented in later
sections.)

The vortex quadrilateral lattice is drawn in blade coordinates, which have their

9dgin at the rotor hub with Z down along the shaft, X radially outward along the
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planform, and Y normal to the XZ plane (Figure 2-5). First the blade segments are laid
out separately in the X'Y-plane applying taper and sweep. The lattice is displaced toward
the trailing edge by a distance of one quarter of the chordwise length of the leading edge
quadrilaterals. For one row of quads and an unswept rectangular planform, this puts the
leading edge quadrilateral along the quarter chord line of the blade and the vortex lattice
control points (center points of each quad) along the 3/4 chord line of the blade. The
lattice is inset from the blade root and tip by a distance equal to a quarter of the width of
the last quad at either edge (Ref. 26). For reference purposes, the quarter-chord line of
the blade is taken as the line that connects the quarter chord points of each blade section,
while the X axis of the blade coordinate frame is the line connecting the hub with the
quarter-chord of the root section. The sweep angle for any segment is defined as the
angle the local quarter-chord line makes with the X axis. Pitching moment calculations
use the local quarter-chord line as a reference axis, however collective pitch is applied
about the X axis.

In actual calculations, the order of operations is different than is shown in Figure
2-5; fn'st, taper is applied linearly from root to tip along each segment. Then sweep is
applied by displacing each segment toward its trailing edge (+Y-direction); the sweep
angle is the angle between the X-axis and the quarter chord line. The twist gradient is
applied by rotating each chord of the lattice about its quarter chord point. Finally,
anhedral is applied by displacing each segment downward in the +Z-direction. The
resulting vortex lattice structure is stored and written to a file that can be used in a
graphical verification of the planform. Also, once assembly of the lattice is complete, it
is subjected to a local stretching to account for the effects of compressibility on sectional
lift and moment properties, as described in Reference 9; compressibility effects on
sectional drag are captured through the look-up procedure described in Section 2.3.2.

In addition to the geometric inputs just described, a camber distribution for the
blade may also be specified. Numerical input is used tO describe the geometry of the
camber line. When camber is present, the lattice itself is not deformed to fit the specified
distribution, rather the boundary conditions at the vortex quadrilateral control points are
altered to introduce the surface slope into the calculation. However, a certain minimum
chordwise density of quadrilaterals is required to resolve the camber distribution; an
absolute minimum of three quadrilaterals chordwise should be used, with five or more
being desirable. This level of quadrilateral density can create a substantial computational
burden. An alternative approach for including empirical zero lift angles is also available
for cases where improved computational efficiency is desired. An appropriate rotation of
the vector normal to the blade at the control points of each quadrilateral will alter the
effective angle of attack of the section and can be used to introduce the shift of the zero
lift angle of attack. In this manner, realistic zero lift angles of attack can be introduced
into the calculations with only one quadrilateral chordwise. The introduction of the zero
lift angle and the option for invoking the pitching moment coefficient from two-
dimensional tables arc described later.

The solution method used to fred the bound circulation given the vortex lattice is
essentially a straightforward implementation of the classical approach described in the
literature on lattice methods for fixed wing applications (e.g., Ref. 24). Each of the
quadrilaterals is examined individually and a mean vector normal to the quadrilateral
surface is established as shown in Figure 2-6, which also shows the location of the
'control point' associated with the quadrilateral. Given this and the location and
orientation of each of the quadrilaterals on the blade, the velocity induced by the blade
lattice on each of the control points is determined, assuming unit strength for each
quadrilateral. Then the resulting velocity is resolved in the normal direction at each
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control point, fielding an array of influence coefficients relating the vector of bound

circulations _ to the vector of downwashes w at each con_'ol point:

w = A_ (2-3)

The vector X can then be used to solve for the forces and moments on each vortex
quadrilateral edge by applying the Joukowski Law, i.e.,

x j = 1, ...n k=1,2,3,4 (2-4)

Here, s_ is the unit vector directed along edge k of quadrilateral j ; ljk is the

length of this side, and y] is the strength of the quad. The reference velocity (I for the
evaluation of forces is computed at the midpoint of the edge k. The forces on each quad
edge are then summed to yield the integrated forces on each blade:

F (I--_.+Y,!.+'I"I_[)= E E F--jk (2-5)
j k

Moments exerted by the blade about the sectional quarter-chord reference axis can also
be computed:

M = (LI+ M,[+ h'J_)= y__,y_,Fjk x rjk (2-6)
j k

Here, I is the vector from the reference axis to the point of action of F. Moments about
the blade root are taken to compute the coning and in-plane deflection, while pitching
moments can be computed for each section to use for the calculation of torsional
deformation.

It is appropriate here to note a change implemented in EHPIC/HERO involving
the blade/wake junction. In EHPIC, the trailing vortex filaments were assumed to be
attached to the control points at the wailing edge of the lattice. As described in the
outline of the near wake model in Reference 9, the influence of the wake elements
attached to the blade are deleted and replaced with an 'overlap' region consisting of an
extension of the bound vortex lattice into the near wake. One new aspect of the
aerodynamic model in EHPIC/HERO was the implementation of a refined model of the
near wake that could be used to replace the overlap model. One step required for the
implementation of this high-resolution near wake model (described in the next section)
was to arrange a new blade/wake junction, illuswated in Figure 2-7. The filaments now
attach to the trailing edge of the vortex lattice; this shift in the release points of the wake
Can have a noticeable effect on rotor performance, as will be shown in Section 6. The
overlap model used in EHPIC may stin be invoked, ff desired.

2.3.2 Sectional drag and moment characteristics

To introduce forces generated by profile (viscous and pressure) drag into the
calculation, the only practical approach at present is the use of two-dimensional airfoil
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data. In the EHPIC code, the form of the data input required involved tabulatedvalues

for sectionaldrag coefficientsas a function of Mach number and liftcoefficient.

EHPIC_A-_RO now re,quiresC-81 formattablesof lift,drag,and moment coefficientsas a

function of angle of attack. However, sectionliftcoefficientand Mach number are still

the variablesused to enter the tables,while angle of attackis simply an intermediate

parameter. In the present calculation,the sectionliftcoefficientis computed using the

vortex latticeanalysisdescribedabove, and the C-81 liftcoefficienttableisentered with

thisvalue and theMach number tofindan effectiveangle of attackforthe section.Using

thisangle as a parameter,the drag coefficient(and,ffdesired,the moment coefficient)are

computed for the localMach number. The liftcoefficienttableisalso used to findthe
zero liftangle as well as the maximum section Cl for use in the liftstallcalculation
describedin Section2.4.

The two-dimensional coefficientsare,of course,defined only fora specificairfoil

section.Many rotorbladesfeaturemore than one sectionalong the span. In the current

analysis,as many as ten differentsectionsalong the span may bc specified. For any

given spanwise station,the sectioncoefficientsare computed for each of the two airfoils

thatbound the segment containingthe stationof interestand then interpolatedlinearlyto

the desired point. Similarly, for each Mach number/lift coefficientpair, bilinear

interpolationisused tofindthe appropriatecoefficientswithineach look-up tableof drag
and moment coefficients. The user has the option of applying pitching moment

computations from eitherthe look-up processor through the vortexlatticecalculation.

2.4 Modeling of Lift Stall

The original EHPIC model included no provision for limiting the lift generated by
the vortex lattice aerodynamic model. EHPIC/HERO incorporates an option to use the
empirical information on Clm_ to preclude unrealistically high lift values. The present

stall model works by tilting the vectors normal to the blade surface of quadrilaterals in
stalled sections by the amount required to reduce cl computed without stall to the Clm_ for

the section. This "stall adjustment angle", Aoh, is assigned to each blade quadrilateral of

the stalled section. Once a section is stalled, the correction angle adjusts to ensure that c 1
never exceeds qm_x. As the calculation proceeds, it is possible for the section to drop out

of stall, especially during the design optimization process. In this case, the adjustment
angle resets to zero and the section is no longer considered to be in stall.

Even though cInever increasesabove Clmax,itisappropriatefor theprofiledrag to

continue to increaseas the angle of attackof a stalledsectionincreases.The value of A_

is exactly the increment of angle of attackof the latticesection over the stallangle.

Therefore, when invoking the look-up tables,an angle of attackof 0t+ Acts isused to

compute the drag coefficient.One simplificationin the presentmodel isthatthe section

liftcoefficientis assumed to stay constant at clmax as the angle of attackis increased

beyond stall,ratherthandecreasing as istypicallythe case for 2D airfoils.The existence
of a multi-valued liftfunction was found to cause dithering in the optimization

calculationsfor very heavily loaded rotors.Results of demonstration calculationsof the

stall feature on a realistic rotor configuration is shown in Section 6.

2.5 Scan Plane Calculations

EHPIC/I-IERO includes a provision for computing the wake-induced velocity at
specifiedsetsof scan pointsin thevicinityof therotor.The presentimplementation sets

up points lying in "scan planes" at particular azimuth angles relative to the blade. Radial
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and vertical spacing of points are defined by the user. Thus, planes of "crossflow"
velocity data at a given azimuthal location relative to the blade are easily, captured, while
planes of data normal to the rotor disk can be captured simply by using results from
within a large number of such crossflow planes at a particular vertical location. It should
be noted that the wake geometry and thus the resulting flow field are at all times assumed
to be axisymmetrie.

Sample calculations were undertaken to demonstrate and validate the scan plane
velocity computations. The data set selected involved the downwash velocity
measurements on the .658-scale V-22 rotor described in Ref. 27. For this case,
EHPIC/HERO was run with nine filaments trailing from the span. Downwash
computations were made in four crossflow planes downstream of the reference blade and
then suitably averaged in an attempt to duplicate the time-averaged measurements given
in Ref. 27. Two operating conditions were considered, both with a tip speed of 232 m/s
(760 fps) and thrust coefficients 0.0117 and .0059. The comparisons of the predictions
with the time-averaged data are shown in Figures 2-8 and 2-9. As is evident, the
predictions capture the behavior of the measured wake reasonably well, with the
exception of a single anomalous point in the center of the measured distribution.

2.6 Determination of Trailing Vortex Strength

Figures 2-10 and 2-11 illustrate the procedure for determining vortex filament
strengths in the EI-IPIC/HERO code. The circulation distribution along the blade is
divided up into zones which each correspond to a particular vortex filament. The change
in circulation across each zone is assigned to the vortex filament associated with that
zone, as shown. In order to have a physically consistent wake model, it is necessary that
each filament trail from the centroid of the circulation distribution it represents.

In the original EHPIC code, the zone boundaries were input by the user and
remained fLxed throughout the calculation. After a calculation was complete, the user
typically had to adjust the zone boundaries and vortex release points to ensure that all the
circulation generated on the blade was trailed into the wake and that vortex filaments
were released from the appropriate centroid positions. Though this scheme works fine for
performance calculations at particular operating conditions, it was found to be inadequate
for the optimization calculations to be undertaken in this effort. During the optimization
process, substantial design changes inevitably lead to changes in the circulation
distribution that require the position and strength of the trailing filaments to adjust.
Without some form of internal adjustment, the optimization process will almost
invariably lead to a non-physical solution.

The EHPICdttERO code offers two new approaches that allow the wake model to
adapt to a varying circulation distribution. These methods are illustrated in Figures 2-10
and 2-11. In both methods, the code determines the circulation zones internally, updating
zone boundaries when necessary as the circulation distribution evolves. In the first
method, the zone boundaries are placed equidistant between vortex filament release
points. Zones on either side of the peak circulation location are treated separately.
Hence, if the peak circulation location moves, the zone boundaries will adjust even if the
vortex filament release points are fixed, (as shown in Figure 2-i0b). The strengths of the
vortex filaments adjust to accommodate the changing circulation distribution so that the
wake always contains the appropriate amount of circulation. EHPIC/HERO also allows
the option to have filament release points move to the centroids of the zones they
represent automatically. This usually leads to a physically consistent model once the
solution converges. Allowing the filaments to move can slow the optimization process
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and is often not even necessary for this method because the filament release points will
always be near the centroids of the zones they represent.

In the second approach, illustrated in Figure 2-11, the user assigns fixe,d values for
the fraction of the peak circulation to be associated with each zone, and therefore, to t_
assigned to the corresponding filament. Figure 2-11 shows an example where three
inboard zones (and filaments) are each assigned one third the total circulation trailed
inboard of the circulation peak and one tip vortex is assigned the total outboard
circulation. It is usually wise to have the filament release points move automatically to
the centroid of the zones for this method because the zone boundaries arc no longer tied
to the filament release points. If the zones and irdaments have to traverse long distances
during the calculation or ff they tend to bunch together (as in Figure 2-1 lb), this approach
can suffer from convergence difficulties. However, when successful, it offers a method
by which the code creates a physically consistent, evolving wake model that requires no
post-calculation iterations by the user. Again, the optimization process is delayed when
lrdament release points move, but once the calculation is near the optimum circulation
distribution, the release points will cease to change and the optimization algorithm will
proceed even more rapidly than the previous method because the fractional strengths of
the vortex filaments are fixed from step to step. The choice of the best method often
depends on the user's preference and the particular problem being studied. Additional
discussion on this point is contained in Reference 12.

2.7 Investigation of Close Blade/Vortex Interaction Modeling

Hover performance is in general highly sensitive to the calculation of aerodynamic
loading in the blade tip region. The tip loading is often influenced by the strong
interaction with the vortex from the preceding blade. One topic of research during the
present effort involved methods for more accurate and efficient treatment of this effect.

A candidate method for accurate resolution of blade-vortex interaction involves the

application Analytical/Numerical Matching (ANM) (Refs. 28 and 29). This approach
includes the development of a new way to handle near-field interactions between the tip
vortex and the rotor blade tip of the following blade. The problem arises because the
inflow velocity at the blade and the resulting blade loading, which are rapidly varying in
space, must be deemed accurately to assure correct performance predictions. To calculate
the velocity induced at enough points on the blade to assure adequate resolution is
computationally expensive in the context of a vortex lattice model, and would in general
require a special high-resolution region of the lifting surface. Furthermore, this region
would have to be adaptive since the position of the vortex is not known ahead of time.

ANM involves an approach similar to the method of matched asymptotic
expansions. This approach uses a low resolution numerical calculation in conjunction
with an analytical near-field correction. As a result, the lifting surface calculation is
needed at very few points on the rotor blade, with the high-resolution near field being
constructed from the local analytical solution. To implement this approach, the
numerical free wake velocity field must be smoothed with an artificially fat vortex core
when velocities on the rotor blade are computed. Because this smoothing produces very
gradual variations in velocity, even due to near-field contributions, only relatively few
control points on the blade are required to reconsu'uct this velocity field accurately. Note
that the far-field which lies outside the fat vortex core, and which actually includes most
of the free wake, is relatively smooth anyway. The fat core smoothing is used only to
calculate wake effects on the rotor blade, whereas the actual core is used when
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calculating velocities on the wake itself, so that the vortex filament positions are still
being accurately computed.

To implement this method it is necessary to develop an accurate near-field solution,
ideally an analytical solution based on the local filament configuration. This solution
should incorporate the position and orientation of the vortex filament passing near an
idealized semi-infinite blade. Actually, two such filaments must be superimposed. One
filament adds the contribution of a vortex with a physically realistic core, and the other
subtracts a vortex filament with the same fat core used in the numerical calculation. The
net effect in the near field is to cancel the numerical fat core effect and add the effect of

the actual core size. At the same time, the far-field effect remains unchanged since the
two portions of the analytical solution cancel in the far field. The vortex f'flament
trajectories are obtained from the numerical free wake calculation modified by the
analytical solution effect on the vortex.

Figure 2-12 shows how the blade-vortex interaction can be decomposed into a low
resolution numerical solution and a high-resolution analytical solution. The numerical
solution encompasses the full complexity of the problem, except that the fat core
smoothes out the strong gradients due to the local blade-vortex interaction. The portions
of the numerical solution outside the fat core radius give the correct velocity contribution
on the blade. Because of the local smoothing, a relatively low density of vortex
quadrilaterals can be used on the rotor blade. Basically, the fat core size must be
comparable to the quadrilateral spacing to assure accuracy. Taken alone, however, this
approach will give an accurate answer to the wrong problem. The local analytical
solution then corrects the numerical solution to obtain the correct solution to the original
problem.

Figure 2-12 also illustrates the role of the local numerical solution. This solution
can be obtained from the superposition of a vortex with the actual core size and an
opposite sign fat core vortex. These vortices can be modeled as straight vortices of
infinite extent, oblique to the blade. The vortices should be positioned to lie tangent to
the actual curved tip vortex filament at the point of closest passage beneath the blade. It
does not matter that these two vortices are straight since they cancel each other in their far
field, namely at distances beyond the fat core size. However, local curvature effects can
be added as a refinement, ff this is found to be necessary; distant curvature effects are
handled by the numerical solution. In the near-field region, the opposite sign fat core
analytical solution cancels the fat core numerical solution, leaving the actual core
analytical solution. By appropriate choice of the fat core size relative to other problem
length scales a mathematical overlap region is created, producing a uniformly valid result
when all the parts of the problem are added together.

In the course of this effort, the groundwork for the ANM implementation was laid
down by incorporation of a feature permitting the use of the artificial fat core for wake-
on-blade interactions. The critical feature needed for full implementation, of course, is
the near-finld solution that characterizes the close interaction of the vortex filament with

the blade surface (except for the ease of direct impingement, which is beyond the scope
of this study). This near-field solution is composed of two parts: a refined model of the
vortex core structure and an efficient, high-resolution model of the lifting blade surface.

A vortex core model was identified for use in this context, drawn from the work of
Bliss (Ref. 30). The roll-up calculation and core structure model identified in Reference
30 provides for a three-layer representation of the vortex core, involving a laminar sub-
core, a potentially turbulent intermediate region, and an inviscid outer roll-up region.
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The analysis in Reference 30 also provides a way to relate some of the important
integrated properties of the core to spanwisc lift and drag loading on the generating blade.

Identificationof an appropriate analyticalliftingsurface model proved more

difficult.The approaches presentlyin the literature(e.g.,Ref. 31) involve infinite-span

liftingwings, while proper treatmentof tipeffectsrequiresa semi-infinitespan to be

used. Reviews of the availableliteratureon analyticalliftingsurfacemethods (e.g.,Rcf.

32) did not yield a method sufficientlyflexibleto be easilyincorporated in a local

solution.Further investigationindicatedthata numerical inner solutionwas calledfor.

Previous experiencein adaptingrelativelysimple numerical methods to serveas the inner

solution in an ANM (or 'NNM') implementation indicatedthat while not ideal,high

accuracy could nonethelessbc achieved while stillretaininga net gain in computational
efficiency.

Two numerical methods were studied. The fh'st involved the use of a high-
resolution panel solution for the lifting blade in the vicinity of the tip, using an extension
of the fixed wing compressible panel method described by Magnus, et` al. (Ref. 33). This

method, which is implemented in the commercial panel code PANAIR, employs a mix of
source and doublet singularities to capture both the thickness and lifting effects.
Calculations of subsonic flow around thick, lifting wings and pressure correlations with
existing airfoil section data were encouraging. However, it was found that the
computational demands of the panel method inner solution, even when restricted to an
isolated high-resolution region close to the tip, has so far kept this implementation from
being cost effective.

Investigationintoanother more promising possibilitybegan recently.Reference 34
describes an exceptionally simple (hence efficient)numerical liftingsurface method

originallydeveloped for the analysisof unsteady flow over wings with controlsurface

deflection.This approach involvesdistributinga setof pointdoublet singularitiesover a

setof panelson the mean camber lineof the liftingsurface.Though thismethod lacksa

representationof thickness,when reduced to the steady case,the point doublet method

offersa very efficientmethod forresolvingthe loading near blade tipsand during close

vortex interactions.Also, the simplicityand efficiencyof the model appears to make ita

suitablecandidate for implementation in the ANM framework presentlyin place. Work

on thistopicisongoing, and thisrefinedtipmodel isa candidate for implementation in
futureversionsof EHPIC/HERO.
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. HIGH RESOLUTION ROTOR WAKE COMPUTATIONS

The work described in this section was motivated by the high sensitivity of rotor
performance to the wake structure u'ailing from the blade rip. As discussed in Reference
9, EHPIC calculations typically involve using a single vortex to model the wake of the tip
region. Both experiment and experience with numerical performance correlations to date
support the use of this approach in many physically important cases. However, it is not a
fully general representation. This section describes the formulation of a high-resolution
numerical model of the blade wake designed to be more generally applicable and, in
particular, to offer greater flexibility in modeling the wake trailed from the blade tip
region.

3.1 Rotor Tip Vortex Roll-Up

Recently there has been much interest in the rotorcraft community concerning the
flow near the tip of a helicopter rotor blade; much of this has been inspired by the
possibilities of improved aerodynamic performance resulting from advanced blade tip
design, e.g., swept-tapered planforms such as the S-76, the UH-60, and the BERP tip.
The advent of tiltrotor configurations with highly twisted blades that depart significantly
from conventional design also calls for better resolution of the dominant physical
phenomena which are present in the rotor wake. Under typical operating conditions,
these rotor blades all tend to exhibit bound circulation distributions that depart from the
pattern characteristic to conventional untapered planforms with moderate twist, i.e., an
abrupt drop in bound circulation near the tip (Fig. 3-1). The presence of gradual tip load
roll-off (e.g., Fig. 3-2) may lead to incomplete tip vortex roll-up by the time of the first
blade encounter. This introduces a requirement for an analysis that explicitly computes
tip vortex roll-up.

General methods for the analysis of tip vortex formation in rotorcraft are not
available, though experimental work has yielded significant insights into the structure of
tip vortices. References 35 and 36, among others, have carried out measurements of swirl
and axial velocities in rotor vortex cores with the objective of characterizing the core
structure. This work has also provided empirical support for models of the flow field
inside the vortex core used in previous calculations. Indirect evidence of the behavior of
rotor blade wakes can also be obtained from smoke and shadowgraph visualizations
carried out over the last twenty years (Refs. 1, 2 and 37). These studies have confirmed
the basic wake structure originally observed by Gray in 1956 (Ref. 38), i.e., a single
strong tip vortex accompanied by a more diffuse inboard wake sheet. The formation of
this tip vortex is caused by the rapid roll-up of the wake immediately downstream of the
rotor tip, which in turn is driven by the large gradient of bound circulation near the tip.
The presence of such loading distributions on conventional planforms is a well-
established fact, but significant exceptions to this pattern exist on tiltrotor blades as noted
above. At present, there exists very little measured spanwise load distribution data on tilt
rotors (Ref. 39 is one of the few examples), but what does exist - coupled with available
computations like that shown in Figure 3-2 - indicates that load distributions have very
broad peaks located well inboard of the tip and characterized by gradual load roll-off
outboard.

Such bound circulation distributions will inevitably lead to more gradual roll-up
of the trailing vorticity, with the likelihood that not all of the maximum bound circulation
will be found in a concentrated tip vortex. Shadowgraph visualizations of model tiltrotor
wakes have indicated the presence of distinct tip vortices (Ref. 37), though in the absence
of simultaneous measurements of the circulation of these vortices, it is difficult to reach a
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conclusion as to the fraction of the peak bound circulation they represent. Scaling
calculations that borrow from work on fixed wing wake roll-up (e.g., Ref. 40) can be, use, d
to estimate the degree of concentrationof the trailedvorticityat the time of firstblade

encounter. Figure 3-3 shows a schematic of the bound circulationon a fixedwing along

with the trailingwake distribution,as well as the major governing equations of the

Betz/Donaldson vortex roll-upmodel described in Reference 40. The model yi.'eldsan
estimate of the core radius and circulationstrength of the tip vortex of a wang as a

function of the downstream distance,given the peak value of the bound circulationas
well as itsfunctionaldistribution.

Figure 3-4 shows the evolution of the core properties using this model as a
function of nondimensional downstream distance for elliptic, parabolic, and linear bound
circulation distributions. The downstream distance on the horizontal axis is

nondimensionalized as a function of aspect ratio AR, the wing lift coefficient CL, and
distance from the location of the peak circulation out to the centroid of the trailing wake.
This analysis is not directly applicable to rotary wing tip vortex roll-up because of the
absence of the symmetry of the trailing wake about the peak circulation as well as
because of the effects of rotation. It was nonetheless judged to provide a useful guide for

scaling tip vortex core sizes and for estimating the degree of roll-up that occurs in typical
rotary wing calculations.

To investigate this point, assume that the 1"0 specified in these figures is treated as

the peak bound circulation near the tip and that the rotor blade tip wake rolls up into a
single vortex. If the further suppositions are made that the distance from the position of
the peak circulation to the blade tip can be equated to the wing semispan in the analysis
of Reference 40 and that the downstream distance is roughly equivalent to the curved
path described by the circular wake, then an estimate of the scale of the vortex core size
and circulation as a function of azimuth angle downstream can be computed. Denoting
the nondimensional distance from the peak circulation to the blade tip as kRR and

normalizing the peak circulation by fiR 2 yields a measure of the distance downstream of

the blade for use in the plot shown in Figure 3-4:

n

D =iF_m_
2 kg2

(3-1)

(Hem, V is the azimuth angle downstream of the generating blade in radians). This

formula applies for both linearand parabolicdistributionsand can be used as a rough

guide to thepoint atwhich the horizontalaxisof Figure 3-4 should be enteredtoestimate

the fractionof roll-upthathas taken place. For example, on an XV-15 rotor,a typical

value forI"m_ is.03,and the locationof most interestisthe firstblade encounter which

occurs at Nt = 2g/3. Assuming that the tip roll-off is parabolic and that kR = .05 (i.e., the

peak circulation is five percent inboard of the tip), D is 12.56 at the first blade encounter,
the plot of Figure 3-4 indicates that essentially all of the trailing vorticity will have rolled

up into the vortex by this point, since the fraction F/F0 plateaus at 1.0 at values of D

between 3 and 6. However, for typical XV-15 cases kg is at least 0.15, in which case D
would be reduced to 1.4. As indicated in Figure 3-4, for a parabolic roll-off the roll-up
fraction at fast blade encounter would then be about 0.8 for parabolic tip loading and
about 0.5 for linear loading. Realistic loading is probably closer to the former rather than

the latter, but in either case it seems likely that the tip vortex structure that the following
blade encounters will not be dominated by a single strong,
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fully rolled-up tip vortex. Most of the vorticity will have rolled up, but a substantial

fraction will remain outside the core, leaving a partially rolled-up filament whose strength
is substantially below the full value of the bound circulation peak.

3.2 Structureof Vortex Roll-Up Calculations

In principle, a variety of options exist for obtaining improved computational
resolution of the rolling-up vortex wakes. Recent work in this area has included attempts
to apply both Euler and Navier-Stokes solvers to the computation of wingtip roll-up
(Refs. 41 and 42). To date, the interrelated problems of high numerical diffusion and
large computation time have precluded practical application of such tools to the rotary
wing problem. In the context of EHPIC/HERO, it was judged most appropriate to

develop a refinement of the present Lagrangian f-re. wake model using vortex filaments.

3.2.1 Initial resolution of rolling-up near wake

refm--Ined the EHPIC code, an initial guess of the vortex wake geometry is successivelyby an iterative relaxation approach based on the influence coefficient method
described in Section 2. Formally, this iterative relaxation can be considered a systematic
method for reducing the error in the position of the initial guess relative to the converged
solution. Within the iteration, various 'error modes' associated with the initial solution

are successively damped and the solution is marched toward the converged state.
Typically, several relatively widely spaced filaments are used to represent the inboard
vortex sheet and a single vortex filament is used to represent the strong rolled-up tip
vortex. Early attempts to use a high-resolution treatment of the vortical flow near the tip
region in EHPIC encountered numerical difficulties (Ref. 9). This was a direct result of

the strong amplifications of the high frequency components of the error modes associated
with the initial guess (which may be far from the converged wake geometry) and the
highly nonlinear variations in the wake-induced velocity field.

In the present effort, a new computational technique was developed that builds on
the existing wake model to permit a high-resolution treatment of the flow downstream of

the blade tip. The new method is based on the use of a sequence of coarse-to-free
Lagrangian grids and is developed in the spirit of a multi-grid method which is widely
used in finite-difference and finite-element calculations (Reference 43). The key idea
behind the present technique is the observation that at the outset of the calculation where
the approximate discrete solution deviates substantially from the actual 'continuous'
solution (i.e., the converged wake geometry), the error norm of the guessed initial
solution is large. If this solution is projected onto a fine grid using small elements, the
high frequency error mode would amplify rapidly because of the non-linearity of the
problem (the iterative influence coefficient method is based on a linear Newton's method
and neglects the non-linear terms in the problem). However, if a coarse grid (i.e., a small

number of vortex filaments each discretized using a few BCVE elements with large are-
length) is used, the fast growing high frequency error components are not present. Thus,
the error norm can be represented as a Fourier series comprising of various Fourier modes
but with the highest frequency limited by that resolvable on the given grid.

The slow growing low frequency modes are damped in the iterative relaxation
process and the calculation converges to an approximate coarse grid discrete solution,

which is presumably 'closer' to the actual continuous solution than the initial guess. Thus,
the ill'st approximation to the desired high-resolution solution is thus the single-tip-
filament solution obtained in previous EHPIC calculations. The error norm associated
with the coarse discrete single-filament solution is correspondingly lower than the initial
guess. This solution can be projected onto a fine grid, and because the amplitude of the
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resulting high frequency error mode is much lower, the non-linearity of the problem is
not significant (any non-linear term is small) and the discrete solution can be marched
toward a converged state on the freer grid. The fine grid discrete solution will represent a
better approximation of the actual continuous solution compared to the coarse grid
representation.

Based on the this general numerical strategy, we have incorporated an optional
algorithm for the high-resolution calculation of flow near a blade tip into the
EHPIC/HERO code. In this algorithm, a baseline calculation using a coarse-resolution
wake representation comprised of a single tip vortex filament and several inboard wake
fdaments is carried out. A representative configuration of the wake is given in Figure 3-
5. This configuration is FL,'Stiterated toward a converged state with a single strong tip
vortex as in the EHPIC code. After the initial convergence, multiple copies (depending
on the desired level of resolution at the tip) of the spatial geometry of the tip filament are
made and attached to the trailing edge of the blade at stations close to but inboard of the
tip. An example of this is shown in Figure 3-6, where a converged tip filament has been
mapped inboard, resulting in a two-Filament representation of the trailing wake at the tip.
Once this initial configuration is set up, the relaxation solution is re.commenced and this
solution is again iterated toward a high-resolution converged state. Usually, convergence
is achieved within several steps because the error norm of the guessed solution in the
free-grid calculation is much lower than would have been the case had two such closely
placed filaments been started "from scratch".

The two-f'flament case shown in Figure 3-6 is only one example of the possible
application of this technique. To date, calculations with as many as five trailers from the
tip vortex roll-up zone have been used. Additional refinement is possible within this
scheme, however computational constraints still limit full resolution of the roll-up
process, as will be discussed at the end of this section.

3.2.2 Amalgamation of multiple tip vortex filaments

In the context of the present scheme, the vortex sheet trailing from the tip,
discretized into a relatively diffuse set of vortex filaments, typically rolls up into a tighter
bundle with the filaments effectively collapsing into a single vortex tube far downstream
of the generating blade. As discussed in Section 3.1, the speed at which this proceeds
(i.e., the distance downstream required for the roll-up to be completed) scales with the
size of the tip vortex zone and the steepness of the bound circulation gradient. In general,
completeresolutionof thisprocessisnot feasible,nor isitnecessaryinmost practical
calculationsofinterestinthecurrentcontext.A significantquestionthenarisesastohow
to compute theroll-upin a way thatleadsto robustconvergence propertieswithout
compromising reasonablephysicalaccuracy.In termsof quantitiesof interest,such as
surfacepressuredisu'ibutionon thebladeimmediatelyfollowingthegeneratingblade,the
resolutionof therolled-upf'darncntsonce theypassby isinconsequentialand themultiple
filamentscan be replacedby a singlefilamentwhileconservingcirculation.Thisisalso
desirablebecauseitreducesthe computationtime withoutsignificantlycompromising
numericalaccuracy.

In EHPIC/HERO, then,the second stageof thehigh-resolutiontipcalculation
involvesa merging algorithmthatamalgamates the vortex trailersand replacesthe
portionof themultipletipfilamentswhich arebeyond thefn'stblade encounterby a
singlefilament.In thispartof thecalculation,a cross-flowanalogyisused tocarryout
thefinalstagesof theamalgamation. The generalthree-dimensionalroll-upproblem is
steady in the rotatingreference frame, and thus can be approximated as a two-
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Figure 3-5. Representative wake configuration of a baseline calculation with a
single tip filament.

Figure 3-6.

1"2 I"3

Representative wake configuration of a fine grid calculation starting

from a converged baseline calculation; tip filament is mapped
inboard to give a multiple filament representation of the rolled-up
wake.

Figure
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3-7. Schematic illustrating the merging of multiple tip filaments

computed using a two-dimensional crossflow analogy.
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dimensionalunsteadyproblem, with distancealong the curvilineartrajectoryof the
centroidof thevortexbundle being the'time-like'variable.The use of a cross-flow
analogy in three-dimensionalsteady flow calculationsis not new and has been
extensivelyexploitedin the calculationsof separatedflow over simple bodies of
revolution(e.g.,missiles)athighangleofattack(Ref.44).

This amalgamation procedure requires that the user select an azimuthal station for
the beginning of the merging process. This station should be well downstream of both
the generating blade tip and the fast blade encounter, a location halfway between the first
and second blade encounters is typically appropriate. Its exact location is computed as
the centroid of the multiple free filaments in the initial roll-up at this azimuthal station. A
trajectory starting from this point and consisting of stations along each of the multiple
filaraents is then computed, with the centroid of the bundle being computed at each
azimuthal station. A cross-flow plane is then created at each station with its unit normal
vector computed from the mean tangential vectors of the multiple tip filaments at the
given station (see Figure 3-7). The multiple tip filaments are then projected onto the
plane and represented as two-dimensional vortices.

The timeevolutionof thesequasi-2Dvorticesiscomputed inthecross-flowplane
by integratingthetwo-dimensionalvorticitytransportequation.A smalltimestepsizeis
chosensuchthatseveralstepsarcexecutedbetween a givenpairof stations,and a fourth-
orderRungc-Kutta integrationscheme isused to ensurehigh numericalaccuracy.At
eachstation,thecomputed locationsofthetwo-dimensionalvorticesgivethecross-plane
location of the nodes of the vortex filaments_ A separation criterion is specified in terms
of a fraction of the core size of the vortices. If the separation distance between any pair
of two-dimensional vortices at a given station is less than the separation criterion, the two
vortices are lumped into a single vortex located at their mutual centroid. The
corresponding pair of vortex filaments are also merged. Typically, merging of all the
vortices is completed within five to ten azimuthal stations.

3.3 Sample Calculation

The high-resolution tip vortex calculation, coupled with the two-dimensional time
analogy merging algorithm, have been successfully implemented in EI-IPIC/I-IERO and
several test calculations have been carried out. The focus of interest here is on rotors

whose bound circulation distributions exhibit relatively slow roll-up of the tip vortex.
Test computations have been carried out on an S-76A main rotor as well as on various

tiltrotor configurations. Selected tiltrotor results are presented here since they best
illustrate the high-resolution model at work and are in fact potentially one of the most
important applications for this capability.

As stated above, computed results on tiltrotor blades often show low bound

circulation gradients near the tip, indicating that the tip vortex may be only partially
rolled up by the time it reaches the following blade. Though a concentrated tip vortex
almost always is present at the fast blade encounter, the strength of this vortex tube may
well be substantially less than the peak bound circulation, and the distribution of vorticity
in the tube may be poorly represented by a single vortex. To investigate this possibility,
successively more refined multiple vortex runs were undertaken for the case of an XV-15
main rotor. Test data on the hover performance of this configuration is available in
Reference 45. The blade is 3.81 m (12.5 ft.) in radius, with a constant chord of 0.354m
(1.16 ft.). The tip speed is 234 m/s (769 fps), and the blade has roughly 37 degrees of
washout, distributed in a nonlinear fashion across the span. Detailed performance
correlation for this rotor is discussed in Section 6.
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A baseline calculation was run with the root pitch at 42.5 deg., initially employing

a very coarsewake with fourfreefilamentstrailingfrom the span:threedistributed
evenly inboard, with a single vortex trailing from the tip (Fig. 3-8). This coarse initial
condition was chosen to dramatize the effect of the refinement afforded by the multiple
filamentroll-upcalculation.Thisvery simplifiedwake model yieldsa predictedthrust
coefficientof0.0120and a FigureofMeritof 0.741,substantiallylowerthanthevalueof
roughly0.78 thatisestimatedfrom themeasured performance datain Reference 45.
Note thattofacilitatethisdemonstration,thetipfilamentwas trailedfrom thetipof the
blade,one quadrilateraloutboardof thecentroidofthetipcirculationzone.Thispartially
accountsfortheunderpredictionof theFigureofMerit

To improve the resolution of the tip wake, three additional filaments were added
to the high-resolution zone, which extended 75 deg. beyond the first blade encounter.
Top and oblique views of the geometry of the refined wake are shown in Figures 3-9 and
3-10, indicating the trajectories of the filaments in the high-resolution region. Each
filament uses 14 free elements subtending 10 degrees of arc in this region. An estimate
based on a computation of D in Equation 3-1 suggests that the roll-up should be complete
in roughly 150 degrees of arc, so elements of this arc length are sufficient to resolve at
least the full rotation of the tip vortex bundle. The prescribed amalgamation zone applies
the quasi-2D flow described in the previous section over 70 degrees of arc, leading to the
smooth merging seen in Figure 3-9.

The bunching of the three outer vortices, representing 87% of the peak circulation
strength, is evident in the figure, and allows a more realistic representation of the flow
field in the vicinity of the blade. The gross features of the roll-up process are captured,
and the improved resolution is reflected in the improvement in the predicted performance;
a Figure of Merit of 0.772 at a thrust coefficient of 0.0121 is predicted, close enough to
the measured performance curve to be within the scatter of the data. Figure 3-11 shows a
comparison of the predicted thrust distribution along the span, indicating the sharper peak
that is associated with the implementation of the high-resolution wake model.

As indicated by these calculations, the high-resolution multiple vortex model
presently in place has a substantial capability to obtain refined computations of the wake
trailing from the tip region. However, certain computational limitations still restrict the
applicability of the present model. The trailing wake should in principle be represented
by a continuum of trailing filaments rather than by the relatively coarse discretization
used here. Adding filaments will drive up the CPU time, but it is more the issue of
robustness that is of most concern. At present, selecting the vortex core radius to be 1.0
to 2.0 times the distance to adjacent filaments in the high-resolution region produces
generally consistent, well-behaved results. However, additional spanwise refinement
brings a requirement to introduce still smaller azimuthal segments to properly resolve the
wake-on-wake interactions. This leads in general to greater difficulty with convergencc,
though this situation can be aided substantially if the limitations on wake-on-wake
velocity discussed in Reference 12 (see the input parameter ICON) are invoked. For
highly refined wakes, though, the overlapping of filament cores becomes inadequate, and
a higher order model should be used, possibly including vortex sheet elements.

In addition, this type of inviscid roll-up model is appropriate only to resolve the
larger scales of the vortex formation process. Refinement of the order of less than a few
percent of core radius requires implementation of a direct model of viscous and turbulent
flow within the core, as discussed in Section 2.7. To date, adding this level of refinement
has not proved cost-effective for the performance optimization applications explored
here.
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Figure 3-8.
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Top view of the initial coarse-resolution solution for the X'V-15 rotor
(wake of one blade only shown).

Figure 3-9.

I f| Itm*MIs 7

Top view of the converged high-resolution wake geometry solution
for the XV-15: four filaments used in the high-resolution tip zone
(wake of one blade only shown).
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Figure 3-10.
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Side/oblique view of the converged high-resolution solution for the
X'V-15 rotor (wake of one blade only shown).
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Figure 3-11. Bound circulation distribution with initial coarse-resolution and
final high-resolution wake models for the XV-15 case.
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3.4 Side-edgeSeparatedFlow Modeling

In the presenteffort, an approximate method for computing the effect of flow
separation on the side-edge of a blade has been developed. In general, this is a viscous
phenomenon whose details cannot be computed with the present inviscid model. The
motivation for this particular feature of the model was to attempt to develop a simple
model that quantifies the likely effect of the 'lift-off of tip vortices from the blade edge,
and to permit the user to assess its importance in particular cases.

The present method represents an extension of the two-dimensional cross-flow
calculation developed for the merging of multiple vortex filaments, as described in the

previous section, to the edge flow problem. In this calculation, the cross-flow analogy is
applied to the treatment of the flow along the side-edge of the blade, and the three-
dimensional steady separated flow is computed as a two-dimensional unsteady separated
flow problem. In this case, cross-flow planes are computed which are in-plane with the
unit normal vector n of the blade surface and the radial direction of the blade (Fig. 3-12).
The plane is placed along the edge of the blade and the flow velocity normal to the blade,
resulting from the angle of attack of the blade airfoil, is projected onto the plane. This
results in a two-dimensional unsteady problem involving a flow past a fiat plate normal to
the flow direction. Time integration of this two-dimensional problem gives the location
of the separated vortex along the side edge of the blade. At t= c/U**, where c is the chord

length of the blade and U** is the projected free-stream velocity in the two-dimensional

case, the two-dimensional calculation gives the location of the separated vortex near the
trailing edge of the blade, which is used as an attachment point for the tip vortex in the
three-dimensional case.

Unsteady separated flow past a normal fiat plate is a classical problem that has
been extensively studied (Refs. 46 - 48). The work of PuUin (Ref. 48) is of particular
interest and can be directly applied to the present calculation. In his model, the self-

similar rolled-up vortex sheet emanating from an impulsively started flat plate is
computed. Based on his self-similar results, it is straightforward to derive the following
relation between the location of the separated vortex and the total circulation in the vortex
and time:

=Z {42.64 I (3-2)

where Z is the height of the vortex above the blade, F is the circulation of the vortex and t

is time. This relation suggests that given a vortex with known location and circulation,
the locations of all other vortices with different circulations can be estimated based on

this similarity.

This has been tested by computing the separated vortex of a two-dimensional
normal flat plate. Two separate flow configurations were examined, which resulted in
two vortices of different net circulations. It was found, however, when the coordinates

are properly scaled, the two vortices appear to be similar, with nearly identical locations.
This is shown in Figure 3-13a and 3-13b and the similarity argument is well proven. This

similarity relation considerably simplifies the implementation of a simple side-edge
separation model in EHPIC/HERO since we need only to compute the location of the

vortex once (at the first step for a given blade pitch angle); at all subsequent iterations,
the location is obtained by using the sealing in Equation 3-2. The effect of this model
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Figure 3-12. Schematic showing blade and cross flow plane at side edge of blade.
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wheninvokedis to alter theverticalreleasepoint of the tip filament. The inputs required
for this model are described in Reference 12.
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4. FORMULATION OF THE ROTOR BLADE STRU_ MODEL

The structural properties of the helicopter blade are in many cases important to the
evaluation of the performance of a helicopter in forward flight. Thus, one of the major
efforts within the development of the EHPIC/HERO code has been to incorporate a
realistic finite element (F.E.) representation of the blade. This section discusses the
formulation of the structural model together with its capabilities and limitations and the

manner in which it is coupled to the aerodynamic wake model. Further description of the
inputs required for this portion of the analysis are given in Reference 12.

4.1 Finite Element Structural Model of the Helicopter Blade

The particular finite element (F.E.) model used here to represent the helicopter blade

accounts for extension, twist and transverse bending displacements. To accurately
simulate these deformations, the blade is discretized into a number of beam finite

elements each having a total of 14 degrees of freedom (d.o.f.). Stiffness properties for

each element are computed from the cross-section geometry and material properties
supplied by the user. Similarly, the blade mass distribution is used to both def'me the
nodal forces due to blade rotation and also the contributions of blade rotation inertia

forces to the stiffness matrices (geometric stiffening). The resulting elemental stiffness
matrices are then assembled and any constrained d.o.f, eliminated to finally yield the
global stiffness matrix for the complete blade structure. The approach taken is simi!ar to
previous implementations of F.E. methods for rotorcraft applications, such as Reference
49.

The transfer of information between the structural and the aerodynamic models is
achieved by requiring force equilibrium and by specifying the kinematic relations that
define the blade geometry in terms of the undeformed blade shape and the vector of nodal
deflections. In essence, nodal forces, f, are computed from the distributed aerodynamic
forces and the blade rotation. The steady state deflections are determined by solving the
linear system of equations, [-K],_r----f.Finally, the deformation vector is used in conjunction
with the undeformed blade geometry to furnish the deformed blade geometry. The
geometry update perturbs the flow-field which in turn alters the nodal forces. Thus an

iterative process is invoked until convergence is attained. This iterative process is done
in parallel with the wake relaxation calculations so that the entire process essentially
converges to the final deformed blade and associated flow-field. The remainder of this
section explains in greater detail the derivation of the structural model and the manner in

which it is coupled to the wake model.

4.1.1 Assumptions

The assumptions inherent in the blade model and geometry are stated below:

• The blade displacements are of sufficiently small magnitude that:

- linear constitutive relations between stress and strain are applicable,

- the transformation matrix relating the local axes of each element may be
regarded as constant and equal to the corresponding matrix in the
undeformed state,
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- rotations due to deformation are assumed to commute, and,

-the twist, bending and extension deformations may be linearly
superimposed.

• The blade material is assumed isotropic and the stress-swain relation obeys
Hooke's law.

The elasticaxisfor each element isdefined. The elasticaxes of any two
adjacentelementscoincideat theirmutualjoiningsection(seeFig.4-1). In
otherwords,theelasticaxisiscontinuousalongtheblade.Thisisnecessaryto
correctlydefinetheassemblyoftheindividualbladeF.E.s.

The principalaxes of thecross-sectionforeach element are assumed to be
perpendicular to the elastic axis of that element. This implies that if there are
sweep and anhcdralchangesbetween consecutiveelementsthentheirprincipal
axeswillnot coincideat theirmutual section.The degreeof approximation
introducedintothebendingcalculationwillincreasewiththeamount of sweep
and anhcdralchange between adjacentelements. Itwillalsodecreasewith
slcndcmcssoftheclementsincethediscrepanciesresultingfrom non-alignment
oftheprincipalaxesoccurlocallyintheneighborhoodofthejoiningsection.

Note that the last two assumptions arc mainly due to the fact that warping effects arc
modeled in the analysis. One of the chief advantages of the finite element method is its
versatility in the assembly of the constituent elements. For simple elements, e.g., pure
beam elements and bar elements, one is free to assemble the components in whatever
orientations one chooses. Furthermore, discontinuities in the mass and stiffness
properties from element to element are permitted. However, when modeling warping
deformations the line of shear centers, or elastic axis, playsa significant role. The current
formulation approximates the elastic axis by a sequence of straight line segments and it is
the desire to accurately represent the elastic axis that results in the preceding last two
assumptions. Thus to the extent that warping effects arc significant, failure to satisfy the
last two assumptions and suitably approximate the elastic axis leads to error in the
solution. In most cases however, and for the closed tubes representative of helicopter
rotor blades, warping effects will be dominated by deformations arising from pure
bending and torsion, and thus violation of these assumptions will not lead to significant
error. This has been verified by numerical testing of the F.E. model for loaded structures
containing 90 ° elbow joints and discontinuities in the beam stiffness properties.

4.1.2 Bladegeometry

Each of the blade segments defined in the EHPIC/HERO blade geometry input
correspondstoa singlestructuralfiniteelement.This isassumed tobc adequateforthe
hover situationwhere staticdeflectionsaresought. The globalaxes fortheassembled
bladearcdenotedby XYZ correspondingtothebladeaxesdefinedinFigure2-5.Local
axes,xyz,arcdefinedforeach elementsuchthatthex-axiscoincideswiththeelasticaxis,
or the lineof shearcenters,of the element. Axes y and z are derivedfrom the
transformationappliedto the global Y and Z axes as described below. The
transformationmatrixrelatingthelocalelementaxes totheglobalaxes isderivedfrom
thelocalsegment layoutspecifications.The segment geometry isspecifiedas follows
(see Fig. 4-2):
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Figure 4-I. Correct and incorrect alignment of the elastic axis (E.A.)
between adjacent elements.
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(1) The planform is first defined. Each blade segment has length, SL, along the

globalX-directionand chord length,c,in the globalY-direction.The sweep, A, defmes

orientationof the quarterchord linefor the scgrncnt. Note thatfor non-zero sweep, the

length of the finiteelement along the quarter chord length differsfrom the length

measured along the blade X-axis. Ifone finiteclement is associated with each blade

segment then theelement lengthshallinfactbe:

SL
1 - (4-1)

cos 7

where T is the anhedral (see step 3 below).

(2) A camber and then a pre-deformation twist gradient are defined over each
segment. This information is not included in the transformation matrix since any effects
due to camber and pre-twist upon structural properties can be more accurately specified
in the information on blade cross-section properties (see Reference 12). Addition of
camber would be reflected in the cross-sectional moments of area and pre-twisting would
affect primarily the orientation of the principal axes. These parameters arc directly
specified in the blade cross-section input file discussed in Reference 12.

(3) Anhedral is then applied to each segment about an axis parallel to the global
Y axis and passing through the left hand end (nearest to the rotor hub) of the segment.

The direction of this rotation is in the negative Y-direction., i.e., positive anhedral, 7,

results in the blade drooping down.

(4) Finally, collective pitch in the form of a rotation about the global X-axis is
applied to the assembled structure.

This sequence of rotations is used to def'me the transformation matrix relating the
local axes to the global ones of the EHPIC/HERO code. An additional 180 ° rotation
about the global X-axis precedes the above rotations since the local finite element z-axis
is positive upward whereas the global Z-axis is positive in the downward direction. The
preceding parameters are supplied in the blade geometry input file.

From the above sequence of rotations the local and global axes are related by:

ixt x (4-2)

where T180 o, T A, T? and T c are the transformation matrices corresponding to the 180 °

rotation, sweep, anhedral and collective operations respectively, and the coordinates,
XoYoZ0, are the global coordinates of the origin of the local axes. Here the origin lies

on the elastic axis at the end of the element nearest the rotor hub. The combined matrix,

[Tr°t] =TcTTTAT180° = I

C_A.

CcSA-ScSTCA

ScSA+CcS,ycA

]
-CcCA-ScSTSA See 7

-ScCA+CcSySA -ecC, Y

(4-3)
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where s(.) and c(.) denote sin(.) and cos(-) respectively. Note that the rotations due to
deformauon can also be referred to the global axes using this transformation since the
deformations are assumed small and the rotations thus commute.

4.1.3 Element degrees of freedom

The specification of the shape functions and the fourteen degrees of freedom of each
element is summarized here. Each element has two end nodes and one node at its
midpoint, as shown in Figure 4-3. The degrees of freedom correspond to translational
and rotational deformations at these nodes. The deformation of the element at any point
is estimated by interpolation of the nodal displacements using the shape functions. Let u,
v, and w denote the displacements along the local x, y, and z axes respectively and let

0 denote the twist deformation about the x axis. Then the generalized displacement
vector is defined as:

(qatIv° fw°tLag: q2 V,x(0) _. q6 W,x(0)

qq_4 = v(1) | Flap: - w0)
q7

V'xfl) ) q8 W'x0)

Twist: ql0 = 0(1/2) Areal: q13 = )

qll 0(1) q14 u(l)

(4-4)

where the subscript ('),x denotes the derivative with respect to the local x axis

coordinate and 1 is the element length. Thus ql and q2 refer to the displacement and

corresponding slope due to bending in the y-direction at the left hand node. The
corresponding right hand node deformations are q3 and q4 , and so forth for the other

displacements. Note that the slopes, v, x and w, x , can be regarded as a small positive

rotation about the local z-axis and a small negative rotation about the local y-axis
respectively.

The transverse displacements, v and w, are interpolated using cubic Hermitian
polynomials as is the common practice in beam finite element formulation. Quadratic
polynomials are used to interpolate the torsional and axial deformations. This is the
simplest element interpolation scheme yielding a consistent formulation for coupled
torsion-bending (Reference 49). Specifically:

fqlt f tq6v(x) = {_3} T w(x) = {_3} T
q3 q7

q4 q8

{q9}0(x) = {q)2}T ql0

qll
q12 }u(x)-- {q_2} T q13

q14

(4-5)
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LocalI)c_cesofFreedom forBladeElement

2 4

_Assembly and Ordering of Global Dcm'ees of Freedom

___22

21

Figure4-3. Dcfinitionof finiteclementdegreesoffreedom and schematicof
theclementorderingscheme.

42



f13 2twhere, {¢1)3} = (_'2_2+_3)1
3_2.2_3 ; {_2} = 4_-4_ 2

(__2 + _3 )l "_ + 2_2

(4-6)

and _=x/l . The preceding relations may be expressed in compact form as:

- v(x) }

w(x)
O(x) = [ • ] 9. (4-7)

. u(x)

where {q} is the vector of generalized displacements and [ • ] is a (4 x 14) matrix

appropriately constructed from Eqs. (4-5) and (4-6).

Finally in the formulation of the elemental stiffness and mass matrices it is valuable

to define principal axes of the cross-section, _ and _, which are oriented such that:

dA = 0 (4-8)

The angle [3 is then the angle between the local y and 11 axes.

The global degrees of freedom are obtained by resolving the deformations along the
global axes using the transformation matrix derived previously. At an end node, all of the

three translational and three rotational d.o.f, are available (since the slopes of the
transverse bending displacements correspond to rotations). Thus, the translation between
the local element d.o.f.s and the global ones is achieved using the transformation matrix,
Tro t :

fV twIut= [Tro_] v
W

; Ry = [ Trot ] .w, x (4-9)

RZ v, x

where RX, Ry, and R Z , are rotations due to deformation about the global X'YZ axes

respectively. At the mid-node the preceding translation is more involved since only two
d.o.f., the twist and axial deformations, are available in the local axes and additional

constraints are necessary to uniquely define the twist and stretch in the global directions.
One approach would be to specify the four remaining local d.o.f at the mid-point by
interpolating from the end-nodes using the element shape functions, i.e. evaluating
v(1/2), w(1/2) and their slopes using Eqs. (4-5)-(4-7). These together with the local twist

and extension deformations completely define the six local displacements from which the
global deformations readily follow. However, it was found that this led to numerical

problems in the resulting transformation matrix, since the complete element is singular
for certain blade geometries. This might be expected from the Observation that 18 global
displacements (6 at each node) have been defined in terms of only 14 element d.o.f.

Hence, the inverse transformation from global to local deformations is in fact non-unique.
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The approach taken here is to simply define the global deformations to coincide with the
respective local ones at the mid-node, i.e.,

{,10}:{,10}
q13 6 q13 L

(4-10)

This both simplifies the transformation and results in an orthogonal element
transformationmatrix,i.e.,ffthe elemental transformationwhich willbc composed of

elements of [Trot]isdenoted by [ToLl so that0a3= [ToLl _L then [TGL]"1 = [TGL]T.

An alternativeprocedure would be to eliminate the mid-node d.o.f, using static
condensation. However, thisisunnecessary in lightof the small number of d.o.f.sof thc

fully assembled model, the additional programming complexity and the further

approximation thatwould thusbe introduced.

4.1.4 Derivationof the element strainsand stresses

In order to compute the elemental stiffnessmatrix the strainsarisingfrom the

preceding displacements must bc evaluated. The nonlinearexpressionsforthe strainsarc
stated:

exx = U,x + ( _F0'x ),x +1 ( 112 + _2 ) 0,x 2

1
+ _ V,x2 - V,xx { TIcos(_+0) - g sin_+0) }

+ 1 W'x 2 . W,xx { _ cos(J3+0)+ 11sin(J5+0)} (4-1 la)

7x'q = 2exTl = (_F,TI-_)(O,x+Onl)

Yx_ = 2ex_ = (_F,_+Tl)(O,x+enl)

and all other strains are assumed zero. Here,

(4-11b)

(4-1 lc)

0nl is a nonlinear second order torsion

term, and _P(x,Tl,_) is the Saint Venant warping function expressing the out-of-plane

displacement, Uwarp , due to torsion:

Uwarp(X,Tl,_) = _F(x,Tl,_) O, x (4-12)

The linearexpressionsarc easily obtainedfrom above:

_xx = U,x + ( *F0,x ),x

- V,xx { 11cos_- _ sin_ } - W,xx { _ cos[_+11 sinj3} (4-13a)

7xTl = (_F,_ -_ )O,x ; 7x_ = (_F,_+ n )0,x (4-13b,c)
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These strains are expressed in terms of the vector of generalized d.o.f., {q} , and the
shape functions and their derivatives w.r.t, x, by substituting for the occurrences of u, v,

T
I!

- [ncosl3- ;sinl3] {03,,})
-[ ;cosl3+,nsinl3] !_3 I

exx = 'e,x {OZ}+,'¥102 } {q}
102}

0 using the expressions, Eqs. (4-11)-(4-13). This results in:

= { B 1 }T {q} (4-14a)

w, and

T

I°tVx; _,,; + Io2'}
0

= { {Bz}T{B3]TJ {q}

{q}

(4-14b,c)

The corresponding stresses are derived from the Hooke's Law:

¢_xx = E exx (4-15a)

Oxr I - G YXrl ; °x_ - G Yx_ (4-15b,c)

4.2 Derivation of the Equations of Static Equilibrium

The discussion above defines the relationships for stresses and strains for the current
F.E. formulation. The required equilibrium equations are obtained via the principle of
virtual displacements where virtual work expressions are constructed by considering the
internal and applied forces subject to virtual displacements. In this framework, the usual

material stiffness properties are represented by an internal virtual work expression, W i,
which in this case is equivalent to the variation of the strain energy expression. Since the
internal virtual work earl be written down directly, it is unnecessary to execute the
intermediate step of obtaining an expression for the strain energy. The rotating XYZ
reference frame gives rise to both inertial forces and geometric stiffening which can both

be conveniently represented by an external virtual work term, W e. The aerodynamic
forces computed in the wake analysis constitute a further external virtual work term.

Finally, the equations for static equilibrium are obtained by equating wi=w ¢.

The structural stiffness matrix K is composed of three terms, K E, KR, and K G,

where K E is the usual material stiffness matrix obtained from the internal virtual work,

and K G and KR are contributions due to the blade rotation. KR is due to the centrifugal

loading. This distributed inertial load gives rise to both a nodal force vector due to blade
rotation and also a softening of the blade. The latter is physically due to the fact that
displacement of a blade element places it at a different radial location and therefore alters
its loading. A simple example of this is the case of deformation along the X-axis, u, at a
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radiallocation,r,fora blade rotatingwith angular velocity,t2. A deformation u increases

the centripetalaccelerationfrom Fir2 to f_(r+u)2 with a proportionalincreaseinloading.

This load increaseinduces a furtherdisplacement, 8u, and in the linearF.E. model is

equivalentlyaccounted for by KR. In the steady statedeflectioncase for hover, KR is

obtained by developing an extcxnalvirtualwork term forthe virtualdisplacements in the

presence of the distributedcentrifugalforces. The contributionKG accounts for the

geometric stiffeningduc to the axial tensileloading induced by blade rotation. The

geometric stiffeningplays a major role in the range of angular velocitiestypicalfor

helicopters.This effectisanalogous to the buckling problem where the axial force is

compressive and generatesinternaldistributedmoments when theblade deforms.

For simple blade bending examples the blade stiffeningeffect,KG, isfound to bc

twice the softeningcontribution,KR, leading to a net increase in blade stiffness,as is

clearlythe expected behavior. K G isderived by expressingthe forcesand moments due

to rotationexplicitlyand regarding these as externallyapplied loads thatarc accounted

forby an additionalexternalvirtualwork term. The externalvirtualwork expressionthen

resultsfrom these applied loads undergoing virtualdisplacements. This approach is

frequently adopted in buckling analysisand bending and torsionproblems where axial
forcesare present.

4.2.1 Constructionof KE

The internalvirtualwork due isgiven by:

wi = j ¢)xx*_xx + axTl" 5YXVl + Gx_" 5Yx_ dV
(4-16)

Substitutingforthe stressesand breaking up thevolume integral:

I

• + OVxn- xn + dA } dx

(4-17)

Substituting for the strains using Eq. (4-14) and performing the integrations results in:

W i = 8_IT [KE]tl (4-18a)

where the desiredstiffnessmatrix is

KE =d {
E{BI}{B1} T +G ({B2}{B2} T + {B3}{B3}T) dA }dx

(4-18b)

Thc-bonstruction of K E requires a sequence of integrations, the first being an area

integration over the area of cross-section at a given station, x, along the element, and the
second being the integral along the length of the element. Evaluation of the area integral

results in expressions containing various properties of cross-section multiplied by the
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shape functions and their derivativesw.r.t, x . These properties include the cross-

sectionalarea,moments of area,areaccntroiclsrelativetothe I"Iand _ axes,and a total

of nine integralsinvolvingthe warping function,_. The finiteelement impicmcntation

cmploycd in EHPIC/HERO does not compute theseproperties,but insteadrequiresthat
the various cross-sectionalarea integralsbc input directlyvia the blade cross-section

input file.The finiteclement code requiresthatthese propertiesbe specifiedatthe end
nodes of each clement and assumes thatthey vary linearlybetween the end nodes. The

finalintegrationalong the clement lengthinvolves products of the shape functionsand

theirderivativesand iscffectcclnumerically using Gaussian integration.A listof the

cross-sectionareaintegralsrequiredin the analysisisgiven in Reference 12.

4.2.2 Constructionof KR and for

In order to determine the contributionsto the stiffnessmatrix and the nodal forcesdue

to blade rotationone firstdefines the position vector of a point on the blade in blade

coordinates,

R(X,Y,Z) = XI+YJ+ZK

or, = + [Trot]

Xie + u l

v+rlcos( +0)- sin( +0)

w+rlsin(13+0)+ cos(l +e)

(4-19a)

which in local coordinates is,

Xic + u

v+rlcos( +0)- sin( +0)

w+rl

(4-19b)

where Xic is the distance along the elastic axis of the clement containing the point. Then

the body force at any point on the blade due to rotation is:

£=- p {(ftT£)x P,} (4-20)

where p is the density of the blade material, and the unit vectors arc aligned with the

global axes. When expressed in the local coordinate system of a particular element, this
becomes,

,x {x0
1

+ 0

0

O0

1 0

O0

[Tm] v+rlcos(13+e)-r.,sin(lYo-o)
w+rlsin(13+e)+ x>s(13+o)

(4-21)

The moment about a point on the element elastic axis, gea = XeaI+Yca2+ZeaK, due to

the rotational force acting on a volume element located at R somewhere on the blade is,
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m = (R-Rea)×f-dAdx (4-22)

The net forcesand moments ata pointon the elasticaxisdefinedby Xca arc:

R

F = f { ^_ f(x,y,z)dA }dX (4-23a)
,rl

X

R

M = [ { / [.R_(X,Y,Z)- ]gca(Xca,Yca,Zea)]X_fCX,Y,Z)dA ] dX

X

(4-23b)

where R isthe value of Xca atthe blade tip.The domain of integrationextends from

Xca tothe blade tipsincethe net forceand moment vectorsvanish atthe blade tip.

The externalvirtualwork for the inertialforcesisobtained by consideringthe body

force duc to blade rotation,f , as a distributedexternal force. Imposing virtual

displacements upon the blade under thisdistributedload resultsin the formation of the
externalwork term:

fxSU + ffSv + fzSW + (Yfz" zfy)r)0 dA dxie (4-24)

The remaining procedure is laborious, but swaightforward and is briefly summarized
below:

•Resolve Eqs. (4-19)to (4-24),in the localclement coordinatesystem.

Substitutefor alloccurrencesof u,

Eqs. (4-5) and (4-4).

V, w,and O, and their derivatives using

-Replace sin(]_-0)and cos(_0) by thc small O approximations.

* Substitutefor _ inEq. (4-24)and discardallterms of order higherthan 2.

• Carry out the cross-section area integrations. As in the computation for K E, this

area integral can be directly expressed in terms of certain cross-section

_opcrties_ Sincethe blade mat_ density,p, isnow present in the analysis

thesecross-sectionpropertieswillbe quantitiessuch as the mass per unitlength,

cross-sectionalcenterof mass, torsionalmoment of inertiaper unitlength,etc.
The complete listof parameters needed isgiven in Reference 12.

• Finally, evaluate Eq. (4-24) from xic=0 to xic=l using Gaussian integration.
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The resulting integral assumes the form,

1

or, = (. +

where the contribution to the stiffness matrix,

I

KR = f_2 j [A0] dx

and the nodal force vector due to the centrifugal forces,

1

fr°t= a2 j {B0} dx

(4-25)

(4-26)

(4-27)

4.2.3 Construction of KG

The virtual work expression for the net blade rotation forces undergoing virtual
deformations that accounts for the geometric stiffening effects is stated (see Reference
49):

1

{F x (v'_Jv'+w'Sw') + My 8(v"0) + M z 8(w"O)

1
+ Q0'8(0') + _ M x/_(v"w'-w"v') } dxie (4-28)

Here,

1;Q=_" Fx (y2 + z2) dA (4-29)

and the terms, Fx, Mx, My, and M z are simply the local components of the net forces
and moments due to rotation summed over the portion of blade lying outboard of the

point Xie on the elastic axis. Note that the first term in Eel. (4-28) represents the usual

additional stiffening due to an axial force. The virtual work contribution for this In'st
term may be viewed as a differential moment arising from structural deformation,

dM z = Fx(v'dx) and dMy = Fx(-w'dx), moving through virtual rotations, 8v' and

8(-w').

Eqs. (4-19)-(4-23) and (4-28)-(4-29) contain all of the information necessary for the

computation of [ KG ]. Again the actual computation is laborious, but straightforward.
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One begins by substituting for £, m x , F x , M, and Q in Eq. (4-28) and discarding all

terms of order higher than 2. The sin(.) and cos(.) are replaced by their small 0 angle

approximations, and the occurrences of u, v, w, and 0 are evaluated from Eqs. (4-4)
and (4-5). The cross-section area integrations are performed to define mass moments of

area. Finally, use of integration by parts where possible simplifies the integration along
the element from Xie=0 to Xie=l of Eq. (4-28). For example, the first term,

1

J {F x (v'Sv'+w'Sw') dxie xie ] Xie=l
Fx(xie ) J v'_v'+w'Sw'dg .J Xie--'O

j xjo+ fx{ ( v'Sv'+w'Sw' ) dl.t } dxie (4-30)

The quantity (v'Sv'+w'Sw') is easily evaluated from Eq. (4-7) in terms of the element

shape functions and the generalized vector of nodal displacements, _. Thus the integral
contained in the brackets {-} can be written down analytically. The final integration

along the element from xie=0 to Xie=l is done by Gaussian integration, and results in,

Wre = -  aT[Kc]a (4-31)

where the geometric stiffening matrix, I_, is proportional to t22

4.2.4 Computation off aer°

The coupling of the structural model to the aerodynamic wake analysis is achieved by

evaluating the nodal force vector, facto, due to the distributed aerodynamic forces and
moments. The associated external virtual work term is derived in a very similar

procedure to that used in developing the rotational force vector, I rot. The wake analysis
presents the finite element routines with an array, QFRC(iseg,ic,k), which represents the
aerodynamic force on chordwise panel, ic, of blade segment, iseg, in the global blade axis
direction, k. The index k-1,2,3 denotes the aerodynamic force in the X, Y, Z directions
respectively (thus k=2 denotes the drag and k=3 the negative of the thrust for the
chordwise panel), and k=4 represents the aerodynamic pitching moment about the X-axis.

To derive the corresponding nodal forces, the aerodynamic forces per unit length is

first obtained by dividing enlxies of QFRC by the panel width, dX. The resulting vector
is rotated into the local reference frame to obtain local forces and moments per unit

length,
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f
a

mz

(4-32)

The external virtual work expression for the aerodynamic forces is then (c.f. Eq. (4-24))

1

= j laxxSU+ laySV+ fazSw+ maS0 + m_8(-W,x) + mzaS(V,x) dxie

(4-33)

which is evaluated as before by substituting for the deformations, u, v, w, and 0, and
numerically integrating to obtain,

: &2T .facto (4-34)

4.2.5 Equations of equilibrium

The derivation of the virtual work terms is now complete. The equations of motion
follow immediately from equating the internal and external virtual work terms, Wi=W e,
using Eqs. (4-18), (4-25), (4-31), and (4-34):

4s_T[KE]_I = cs_iT(-[KRIII+_rot) -csIIT[KGI.Q + cs_ITInero

or, since the virtual displacements are arbitrary,

[KE+KR+KG] _ = [lOt + facto (4-35)

4.3 Assembly of the Global Stiffness Matrix and Forces

The preceding equation, Eq. (4-35), implies an assembly process of the individual
element stiffness matrices and nodal forces into a corresponding global stiffness matrix
and applied force vector for the complete helicopter blade. The assembly process
involves three sub-procedures: the first involves referring the elemental matrices and
nodal forces to the global axes, the second defines the array indexing that relates the local
degrees of freedom for each element to the global ones, and the final step entails
implementation of the boundary conditions at the blade root.

Rotation of the element matrices and nodal forces into a global coordinate frame is
accomplished in the standard manner:.

[ Kglobal ] = [ToLl [ Klocal ] [ToO T (4-36a)

{fire}global: [ToL.] {i_X}loca1 (4-36b)
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{Per°}globa 1 = [TGL] {_faer°}local (4-36c)

as may be easily verified by noting that the potential energy and the virtual work are
independent of the choice of reference frame. Here, [TGL] is the transformation matrix

described in Section 4.2 relating local d.o.f., g, and global generalized d.o.f., s:

The blade elements are then laid end to end in sequence from blade root to blade tip.
Global deformations are detrmed as outlined in Eqs. (4-9) and (4-10). However, the

ordering of the global degrees of freedom is different from the local ones, Eq. (4-4).
Each element degree of freedom is associated with a global one via an indexing array or
splay matrix, C00,ie), where k is the local degree of freedom 00=1,2 .... 14), ie is the
element number, and C(k, ie) is the global degree of freedom. Having specified a C00,ie)
for each element then the global matrices may be constructed by 'splaying' components
of the elemental mass and stiffness matrices into their corresponding positions in the
global matrices. For example, the [i,j] entry of the elemental stiffness matrix for finite
element, ie, is added to the [ C(i,ie),C0,ie) ] entry of the global stiffness matrix. In like
manner, the global nodal force vector is built up from nodal forces for each element.

It remains to specify the actual ordering of the global degrees of freedom. Degrees of
freedom are numbered upwards starting at the blade root. Using the definitions for global
displacements and rotations given in Section 4.2, Eqs. (4-9) and (4-10), the global
degrees of freedom are summarized in Table 4-1 (see also Fig. 4-3).

The construction of the global stiffness matrix is completed by imposing the
boundary conditions at the root. For articulated blades, it is implicitly assumed in
EHPIC/HERO that the blade is freely hinged in both flap and lag directions, but that the
remaining degrees of freedom at the root - the three translational displacements and the
twist about the X axis - arc constrained. The boundary conditions are implemented by
simply deleting the rows and columns of the global stiffness matrix corresponding to
these four degrees of freedom. For cantilevered blades, by definition all root
deformations are zero and thus all six degrees of freedom at the root must be removed.

4.4 Solution of the Structural Equations

For a given nodal force vector, l_=l'r°t+t aero, it is required to solve the finite element
equations,

[K] s = f (4-37)

for the global deformation vector, s. The iterative solution process whereby the final

deformed blade geometry and associated wake structure are obtained, gives rise to a
series of nodal force vectors, L which changes as the flow-field is updated. For a fixed

undeformed blade planform [K] remains unchanged so that Eq. (4-37) is repeatedly
solved for a sequence of right hand sides. The LU decomposition procedure is most
amenable to this type of problem since the LU decomposition of [K] need only be

performed once. The solution s for any f is then obtained by a computationally cheap
backsubstitution procedure.

The end-to-end layout of the beam elements and numbering of the d.o.f, results in a
banded stiffness matrix with maximum bandwidth, rob=22. In EHPIC/HERO, the non-

zero elements of [K] are stored in an array B according to,
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B(j-i+14,i)= [-K]ij (4-38)

This isthe storageform required by thepair of efficientbanded LU decomposition and
backsubstitutionsubroutinesDECB and SOLB of Reference 50. The LU decomposition

isperformed once by callingDECB immediately subsequent to the constructionof the

array,B. The nodal deflectionsare then obtained for each of the nodal forcevectorsby
the backsubstitutionroutineSOLB.

For certain wake layouts and blades, the iterative process has been observed to
become unstable, particularly for high resolution wake models or relatively soft blades.
This is believed to be due to the change in structmal deformation, and hence the blade

geometry, that takes place between consecutive iterations. If this change is too large,
kinks in the trailing filaments develop and undermines convergence. To counter this

possibility, the maximum change in deformation state during an iteration, As, is limited

by the parameters DLD and DLR supplied by the user. Here DLD is the maximum
change in displacement deformation between EHPIC/HERO iteration steps, and DLR the

corresponding maximum change in rotation deformation. If any element of As is found to

exceed these limits, then the whole vector, As, is scaled so that the maximum change

requirement is satisfied. The deformation state is then updated, s_s+As, using the scaled

version of A_. This limiting is not applied during the initial relaxation since this portion

of the calculation tends to be relatively insensitive to characteristic changes A_.

Since the overall process is iterative, a tolerance parameter, analogous to those used
to test for wake convergence, is supplied to verify that the structural computation has
converged. The required test for all i takes the form:

displacement deformations: Asi < CONVGS * R

rotation deformations: Asi < CONVGS

(4-39a)

(4-39b)

where CONVGS is the user supplied tolerance parameter.

4.5 Update of Blade Geometry

The coupling of the structuralmodel iscompleted by specifyingthe relationbetween

the globaldeformation vector,s.and thegeometricalparameters used tospecifythe blade

layout.As describedin Reference 12,the blade geometry isdefinedby the variables:

SL(iseg)
SWnm'(iseg) -
TWG(iseg) -
TWR(iseg) -
ANH(iseg) -
CHORD(iseg)
COLL

segment X-length
segment sweep
segment twist gradient
twist at left hand end of segment
segment anhedral
chord length at left hand end of segment
blade collective.

In EI-IPIC/HERO, the undeformed versions of these quantities arc input by the user and
for optimization problems represent the design variables. The blade layout routines
require the deformed quantities which arc obtained by superimposing the deformation
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vector, _ upon the undeformed shape. Table 4-1 summarizes the information contained
in the vector, s. Denoting the variables at the left hand end of a segment by (*)L, those at
the fight hand end by (')R, and the undeformed geometry by (*)0, then the deformed

geometry,

SL = SLo + UL- UR
SWEEP = SWEEP0 + AVS0*cos(COLL)+ AVG0*sin(COLL)

TWO = TWG0 + [ _X)L- (Rx)R] / SL

TWR = TWR0 + (Rx)L

ANH = ANI-I0 + AVG0*COs(COLL) - AVS0*sin(COLL)
CHORD - unchanged by s
COLL - unchanged by s

(4-40)

where, AVS0 =

AVG0 = -

I [ (Rz)L + (RZ)R]
2
1
[ (Ry)L + (Ry)R]

This takes into account the global rotation about the X-axis of the entire blade when
applying the collective after the blade planform has been defined.

4.6 A Note on the Wake/Structure Coupling Matrix

The structural equations, Eq. (4-37) can be expressed as,

A_={ f-Ks} = K_ (4-41)

where the deformation is updated s,--s+A_. This can be combined with the wake

equations so that,

f r-LQ Qwro
(4-42)

The left hand side residuals formed from nonlinear equations are driven to zero by an

iterative process that mounts to a Newton method for updating the _, N, and s. The fight

hand matrix of t-n'st order linear derivative terms does not reflect the coupling between the
aerodynamic and structural equations and so the question arises as to whether the

coupling terms should also be derived. Note that the accuracy of the analysis is entirely
dependent upon the computation of the left hand vector of Eq. (4-42). The implicit
coupling of the two sets of equations is also embodied in the left hand terms. The role of
the fight hand side matrix is to enhance the convergence of the iterative scheme providing
superior stability and rate of convergence to the overall scheme. Thus, provided that this
goal is achieved, one is atliberty to make approximations to its elements.

Our experience indicates that neglecting the block off-diagonal coupling matrices is

both an adequate and desirable approximation. Earlier version of the code included the
off-diagonal coupling terms which were derived at considerable computational cost. It
was found that the overall rate of convergence was minimal when compared against the
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presentcasewith matrix coupling entriesneglected. Furthermore, the robustness of the
overall solution scheme was comparable in both cases and was found to be best
controlled by specifying the parameters DLD and DLR in sensitive cases. The

approximation is very desirable for several reasons: I) Evaluation of the off-diagonal
terms is very expensive in computer time and requires substantial storage space; 2) The
advantages of the efficient banded LU decomposition scheme described in Section 4.4 are

forfeited. Instead, the Gaussian elimination scheme employed in EHPIC/HERO for
solving the N wake equations is now applied to an (N+NF)*(N+NF) array where NF is
the no. of degrees of freedom in the structural model. Hence the number of operations

involved in Gaussian elimination increases from O(N 3) to O([N+NF]3). 3) There is a

substantial reduction in coding complexity. 4) For optimization studies, the effects of
structural deformation are more efficiently incorporated by recomputing the structural
stiffness properties and deflections for perturbed designs. Therefore, the coupling entries
in the right hand matrix term in Eq. (4-42) may be safely neglected resulting in
substantial reduction in computational resources with no noticeable loss in robustness.
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TABLE 4-I

Specification of the Global Degrees of Freedom For Element, ie.

Global Deformation De m-ee of Freedom

Left-hand node of element, ic:

Mid-node of element, ie:

Right-hand node of element, ie:

V s8ie_7

RZ ssie-6

W s8ie. 5

Ry Ssie. 4

RX s8ie-3

U s8ie. 2

ql0 SSie,-I

q13 SSie

V S8ie+ 1

RZ SSie+2

W s8ie+ 3

Ry SSie+ 4

RX ssie+5

U S8ie+6
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5. IMPLEMENTATION OF DESIGN OFFIMIZATION

5.1 Outline of the Optimization Solution Method

The fundamental procedural elements involved in optimizing the rotor design in
EHPIC/HERO are outlined in Fig. 5-1. The initialization routine specifies the objective
function, the design variables and the optimization method to be employed. The
subsequent optimization process is iterative and involves sequential evaluation of local
objective function and constraint derivatives, pre-processing this information into suitable
input to the optimization algorithm, implementing the improved design, and re-
converging the wake analysis in EHPIC/HERO. The basic routines that carry out these
procedures are also indicated in Fig. 5-1. This section describes each of these operations
and their computational implementations.

5.1.1 Optimization algorithms

Itisappropriatetobegin with a descriptionof theoptimizationalgorithmsincethe
inputrequiredtospecifytheminimizationproblem dictatestheinformationthatmust be
suppliedby otherroutines.Thus, thesetof computer code modificationsand additions
thathave been cffectedin EHPIC/HERO to carryout the optimizationprocessdepend
fundamentallyon thecoreoptimizationalgorithmsemployed. Converselyhowever, for
problemsof thisscale,thecomputationalcostinvolvedinprovidingthisinformationwill
limitour choiceofpracticaloptimizationmethods. Therefore,theselectionof a suitable
optimization scheme is itself an attempt to optimize the fundamental trade-off between the
rate of convergence to an optimal design over a series of iteration steps and the amount of
computation required per iteration.

Ingeneral,theconstrainedoptimizationproblem may bc posed:

Minimize J(X) subject to the constraints

gj(X) < 0 , j-l,...,m i
gk(_ -- 0 , k---rni+l,...,m e
1i < x i < u i , i=1 .... ,n

(5-1)

where X is the state vector of order n, J is the objective function to be minimized by
appropriate choice of X, the gi and gk are the mi inequality and me equality constraints,
and Ii and u i define lower and hpper bounds for the corresponding design variable, xi. In
the context of rotor design optimization in hover, the complete state variable vector,

X = { x,., 2_ s, d }T where x. and :g are the wake collocation point locations and blade
quadrilateral bound circulations used in the E}IPIC/HERO analysis, s, are the structural
deflections, and the vector, d, constitutes the set of design variables such as blade twist,
sweep, and arahedral.

In practice, for the performance objective functions considered here, structural
deformations, ;i, are eliminated prior to posing the optimization task. Instead, effects due
to structural deformation are implicitly accounted for when evaluating the derivatives for
the design vector, d. Candidate objective functions, JOO, include the power arising from
induced drag or profile drag, thrust, the Figure of Merit, or a combination of these.
Examples of imposed constraints include such requirements as maintaining constant
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( Initialization

_._ _
I

Conduct Wake Analysis I
in EI-IPIC/HERO I

Compute necessary derivatives:

- Objective Function, VJ

- Imposed Constraints, Vg
w.r.t design variables

)

Pose local optimization problem
using information from

V J, Vg, and influence coefficients

I Compute optimaldesign I

Implement designchanges I

I

HCOPIN

HCDESl

HCO_

HCDESl

Figure 5-I. Flow chart of overall optimization process and the main
subroutines involved.
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thrust or remaining below a specified total power ceiling. Note that the equations used in

the wake calculation are used to form equality constraints, gk, relating the .,X.c,:g and d

[see Eq. (5-26)]. As described below, these equality constraints can be either used

directly as input into the optimization routine or else employed to eliminate the _, _. The
latter is more efficient, but one forfeits the ability to impose constraints on the

perturbations in x,. and ._

In general, the functions, J and gi are nonlinear. Furthermore, analytical expressions
for these functions in terms of X are usually unavailable and their evaluation is carried
out in a post-processing phase after the hover solution has converged. Thus, although
J(X_.)and g__) can be obtained given X the derivatives of these functions are typically
available only by numerical differencing. We observe that the influence coefficients
employed in the wake analysis are basically finite difference approximations to the first
derivatives of collocation cross-flow velocities, tl, and downwash velocities, w, w.r.t, x,,

and _. The approximation of the fL,'Stderivatives of these quantities Wx.t. to the design
parameters, d. exacts a computational cost comparable to that of obtaining the other
influence coefficients and is judged acceptable. Thus, an optimization technique that uses
first order information is highly desirable since much of the necessary data is already
available from the wake analysis, and the remaining information can be determined with
the same order of computational cost as incurred in one wake analysis iteration. Zeroth
order techniques using only the evaluated J(__.) and gi_) are wasteful of the first order
available information and require excessive iterations to converge. Second order methods
are judged prohibitive as a result of excessive computational cost involved in evaluating

°92gi •
thesecondorderderivatives,_v_|o_]_x=_x* and 0X_Ix=x__

I

5.1.2 Review of the Phase I optimization scheme

The fn'stversionof the wake analysiswith optimizationcapabilityemployed a
sequentiallinearprogramming (SLP) techniqueas the core optimizationtechnique
(References51, 52). As describedin Reference4, the nonlinear,J___.)and g_.) are
lincarizexlaboutthecurrentdesignand wake solution,

J_) = J(X*) + vj(___*)Ax (5-2)

where the constraint

0 = gk(_-)= gk(-X-*)+ Vgk(_*) AX (5-3)

is imposed. In Reference 4, J(_) was equated with the total power required by the blade,
and the set of equality constraints, giGg.), is composed of a thrust constraint to maintain
constant thrust. The set of equations used in the wake solution and extended to account
for design variable perturbations. The twist gradient over each blade segment constituted
the design vector. The state vector, X*, denotes the current design and converged Wake

description, and A_ perturbations about that solution. Specifically, the posed problem
was to minimize thepower expressedas,
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Ax c

(5-4)

subject to constant thrust,

. . fDx_.cl

0 = T-T0 "T(__')-To + ITx,T_,_[ A_yI

the wake consla'aints,

+ {Td}{Ad } (5-5)

{_} = {wq-}__,FQqx QqY IfAx-cIt rQ<'dl ,,d}LQwx QwvJ{A_yJ + LQwd] -
(5-6)

and move limits,1i < Ax i g ui , where,

_P •

i_1" . itTTx"- ; T¥=_, Td=_ "

Qqd = o3dj o3dj

(5-7a)

(5-7b)

(5-7c)

and the entries of submatrices Qqx, Qq_,, Qwx, and, Qw3, are identically the influence
coefficients employed in the EHPIC/HERO analysis. Thus the additional computational
load involved computation of derivatives w.r.t, to the design and the thrust and power
derivatives. The wake constraints ensure that, to a linear approximation, the cross-flow
and downwash velocities remain zero under the design perturbations. Eqs. (5-1) were
solved using a simplex linear programming routine (Reference 52). The state is then

updated using the computed AX and the EHPIC/HERO analysis reconverged. The
process continues sequentially until no substantial improvement in JGK)is obtained.

The original SLP algorithm made efficient use of the first order information at hand
and proved sufficient in improving the blade twist distribution for power reduction at
constant thrust. Nonetheless, certain improvements to the algorithm were desirable.
Chief among these were: a more efficient implementation of the upper and lower limit
constraints which originally were entered as 2n inequality constraints (n being the order
of the state vector, _); a means of converging to minima that lie off the imposed
constraints; improved numerical conditioning of the simplex tableau; and ways of
reducing the tableau array size. Hence, an integral task of this effort has been evaluating
alternate optimization algorithms and addressing ways to improve the efficiency of the
algorithm.

5.1.3 Selection of optimization algorithms for Phase H

As explained above, our examination of optimization algorithms has been limited to
those requiring at most first order information. The available techniques may be broadly
categorized into constrained and unconstrained minimization methods. The former
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approach deals with the imposed constraints directly, whereas the latter augments the
objective function with a penalty function which basically penalizes violation of the
imposed constraints. More stringent constraints can be emphasized by varying the
weighting parameters in the penalty function. The transformM problem is then solved
using an unconstrained optimization method. Unfortunately, the unconstrained

techniques tend to suffer from numerical ill-conditioning related to the penal_ function
weightings. Furthermore, it is difficult to judge a priori which of the consumnts arc of
greater importance in the problem and how to quantify the weighting terms to
appropriately enforce a given constraint. Finally, computational experience in structural
optimization problems indicates that such schemes frequently converge much more
slowly when compared to the direct methods (References 51, 53).

Therefore, we focused on the constrained optimization methods. The candidates
considered were an extension of SLP with move limit reduction near the optimum, the
method of feasible directions, and sequential quadratic programming (SQP) (Reference
51). It was decided to implement SQP for the following reasons:

(1) It tends to exhibit superior convergence properties. This is due to the iterative
generation of a Hessian matrix, which is essentially a positive definite approximation to

-"'82_7 . As detailed below, the mau'ix can be generated using only f'n'st order

IX=X*
derivatives.Qualitatively,itembodies information from previous steps to estimate the

curvature,or second order properties,in the vicinityof the optimum. Itisthis'memory'

of previous iterationswhich gives SQP methods an advantage over other techniques

(SLP, method of feasibledirections)using only the localRrst order data and which
originallyengendered a closerlook atSQP methods.

(2) The presence of a positive definite quadratic term in the objective function enhances
convergence near minima that do not lie on the constraint boundaries. It is well known

that the solution to a linear programming problem lies at the intersection of exactly n non-
degenerate constraints. Thus, if the true nonlinear minimum does not lie at such an
intersection the linear programming solutions will dither between the imposed move
limits, li and ui. In practice, the move limits are reduced when proximity to the minimum
is detected so that one effectively 'shrinks' the feasible domain down to the optimum
design. This procedure is time consuming and is circumvented in SQP methods by virtue
of using a quadratic objective function.

(3)The SQP problem issolved by using a modified versionof the simplex algorithm. As

describedbelow, solvinga quadraticprogramming problem amounts to findinga feasible
solution to the Kuhn-Tucker conditions which can be cast as a linearprogramming

problem with additional logicalconstraintsin the selectionof variables leaving and

enteringthe activeset(i.e.the setof variablesthataway from itsbounds, liand ui.)Thus,
the core simplex routinesemployed by $LP and SQP methods share a strongcommonalty

and in fact,the same simplex algorithmisused by both methods in the optimizationcode

developed here.

One drawback of the SQP approach is increased array dimension of the simplex

tableau.Whereas the tableauforthe modified SLP scheme developed here isof order (m

by n) where m isthe number of imposed constraints,the SQP solutionprocess requiresan

array of order (m+n by m+2n). Since the number of wake relatedequalityconstraintsis

n, then m=n and the SQP method has six times the memory requirements of the SLP

method used to solve the same problem. The number of floatingpoint operations
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increases accordingly. Furthermore, away from the optimum, the SLP and SQP
algorithms tend to advance at the same rate. This is due to the fact that away from the
optimum the design change per optimization step is limited primarily by the imposed
move limits. The linear approximation to the objective function dominates the quadratic
terms and the design changes obtained per iteration tend to be identical using either SLP
or SQP. The picture is different in the neighborhood of the minimum where many of the
first order derivatives tend to zero, so that the quadratic term in the SQP formulation
becomes important and accelerates convergence to the final design. Accordingly, it has
been found to be desirable to retain both the SIP and SQP techniques, using SLP initially
and then continuing with SQP when proximity to the optimum is ascertained. The
similarity of the underlying simplex procedure used in both SLP and SQP solution
procedures has thus proven to be a distinct advantage.

In the following sections, the linear programming (LP) and quadratic programming
(QP) problems are posed, and the solution to the QP problem stated and its relation to the
I2' problem established. The construction of quadratic term in the SQP approach is then
described and finally some aspects of the common simplex routine detailed.

5.2 Statement of the SLP and SQP Problems

The nonlinear optimization problem posed in Eqs. (5-I) is repeated:

Minimize JOl3 subject to the constraints

giGS) _ 0 , j=l .... ,m i
gk(2_) = 0 , k=mi+l,...,m e
I i < x i < u i , i=l .... ,n

(5-8)

The solution at iteration step, q, is known, XII, and the problem is to determine a change
in this solution which results in a reduction in Jl2Q. In the iteration limit, convergence to
a local minimum is expected. The LP problem to be solved each iteration step is:

Minimize, J(X q) + VJ(X q) AX subject to

gj (_xq) + Vgj (X q) A X _<0 , j=l,...,m i

gk(X q) + Vgk(xq) AX = 0 , k--mi+l,...,m e

A1i < Ax i < Au i , i=l,...,n

(5-9)

The upper and lower bounds incorporate move limit requirements:

Ali = Max. {- Ax_ ax , li - xiq } (5-10a)

Aui=Min. { Aximax , ui- xiq } (5-10b)

where Ax_ ax is the maximum change in xi allowed per iteration step. The QP problem is

identical to the LP problem except that the objective function is augmented by a quadratic
term to:
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J(.Xq) + VJ(Xq) AX + 1AXT[B] AX (5-11)

where matrix, [B], is a positive def'mite approximation to the Hessian of the objective
function and local constraints and is generated iteratively from successive evaluations of
the first order derivatives as described in Section 5.2.2.

The LP problem at each iteration of the SLP method is solved using the simplex
technique described in Appendix A. In the SQP case, the sequence of QP problems is
solved finding feasible solutions to the Kuhn-Tucker equations as described below.

5.2.1 Kuhn-Tucker conditions

The solution to the QP problem is stated in terms of the well-known Kuhn-Tucker
conditions (Reference 51) as follows. The full nonlinear conditions for an extremum are

thereby stated by f'wst defining a Lagrangian,

n n mi+rne

L(X)= J(X) + Z#li(li - xi) + Z/22i(xi - ui) + Z _l,i gi (X--)
i i i=l

(5-12)

then in addition the imposed constraints,

aL

VL(._') = _-_- = 0
(5-13a)

;i(; ) ;( r) • •/2 X -1 i - 0 ; # i ui-X -- 0 ; #1i,/22i > 0 (5-13b)

It

;I,; gj(X*)- O; _lj > 0 (j=l,...,mi) (5-13c)

_'k unbounded (k=mi+l, .... mi+me) (5-13d)

where the superscript, (-)*, denotes evaluation at the optimum point. The new

parameters, 1_I, l,k2 and, h are Lagrange multipliers that correspond to the lower and upper

bound constraints and the imposed constraint equations respectively. The fast of these
equations define an extremum while the remaining conditions restrict the allowable
values for the Lag'range multipliers. Specifically, for inequality constraints, the
associated Lagrange multiplier can only be non-zero if the constraint is active. This
implicitly states that when a given inequality constraint is active then the gradients of the
cost function and constraint point in opposite directions so that the design cannot be
further improved without violating the local constraints.

For the SQP problem posed in terms of design perturbations, in addition to satisfying

the imposed constraints, the optimum A_ satisfies:
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mi+me
VJ(X q) + [B]AX - 121 + 1"£2 + 2 _'i Vgi(X--q) =

i=l

_0(5-14a)

with

flli (Axi-Ali) = 0 ; /22i (Au i-_kxi) = 0; flli, _2i > 0 (i=l,...,n)

(5-14b)

2j[gj(Xq) + Vgj(Xq)Ax]- 0 ; 2j > 0 (j--1 ..... m0 (5-14c)

3.k unbounded (k=mi+l .... ,me) (5-14d)

In the above, the first n equations are merely linear equality constraints which are directly
accommodated in the simplex formulation. Likewise, the positivity requirements upon

the components of ld,1, IL2 and, 7_j are naturally dealt with in the LP framework. The
imposed linearized constraints, gi, are of course already handled by the simplex
algorithm. Therefore, the only modifications required to solve the QP problem utilizing
the simplex algorithm are those related to the nonlinear constraints in Eqs. (5-14b,c).
Fortunately, these conditions can be implemented entirely by logical restrictions upon the
variables allowed to enter and leave the basic set during a pivot operation. Specifically,
in the simplex formulation the inequality constraints, are converted to equality constraints

by the use of slack variables, sj:

gj(X q) + Vgj(Xq) AX _ O (5-15a)

Thus the related Lagrange variable, _,j, can only enter the basic set if sj is at its bound,

sj--0, implying that the corresponding constraint is active. Equivalently, only one of sj

and Xj can be in the basic set at a given time. Since membership of a given variable in the

basic set is a logical attribute, the nonlinear constraints embodied in the Kuhn-Tucker
conditions are implemented simply by conducting a series of membership tests upon the
candidate pivot elements.

The problem solved by the QP algorithm is an approximation to the original non_
optimization task posed inEqs.(5-s).Thusinthespirit of iterativemethodsfor solving

nonlinear problems by local linearization, the solution, _, obtained is used to update the

current design, the functional and constraints and their first order derivatives re-evaluated
about the new state, and a new QP problem formulated about that point. Although it is
difficult to derive conditions for convergence in the general case, the sequential process is
expected to converge to the nonlinear optimum, especially if the functional is convex in
the vicinity of the optimum.

An extension to the SQP procedure described is to employ the state vector update,

AX, as a search direction and perform a 1-D minimization or equivalently determining an

optimal step length along this direction. The theoretical advantages of conducting a 1-D
search along the optimal direction include more accurate update of the Hessian matrix
approximation. Also, theoretical proofs of superlinear convergence of the SQP scheme
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assume that 1-D optimization is executed. Unfortunately, at least two additional
functional evaluations (calls to EHPIC/HERO), are necessary to determine an

approximate 1-D minimum using a quadratic polynomial fit. This cost was found to be
unnecessarily expensive since the rate of convergence to an optimum was not
significantly improved. We believe this to be due to violation of constraints that can
occur when the optimal step length differs from unity. It was also observed that the 1-D
functional which is constructed from the cost function and active constraints is sensitive

to round-off error and constraint violation and occasionally leads to unreasonable step
lengths which must be limited. Furthermore, as noted earlier, when the design change is
limited primarily by the imposed move-limits, the progression of the solution toward the

optimum is fairly constant whether employing SLP, SOP or SQP with 1-D minimization.
Hence, the SQP algorithm employed here is executed using umty step length.

5.2.2 Hessian matrix update formula

The Hessian matrix approximation, B, is updated at each optimization step, q,
according to the Broydon-Fletcher-Shanno-Goldfarb update formula (References 51, 54,

55). Given the current approximation, Bq, the updating proceeds as follows: First rescale

Bq as,

pTwq

B*=td3 q , tC-p-T'_Bqp

then update,

B q+l B* B*p pTB* r r T

=
where,

(5-16)

(5-17a)

p ffi xq-x_.q-1 = A_q-1 (5-17b)

r - Ow q + (1 - O)B*p (5-17c)

wq= VxL(Xq,_,q'I ) - VxL(Xq'I,_q'I ) (5-17d)

L = J(.X) + _ _'igi(X) (5-17e)

i_I h

and O =

1 if pTr > 0.2pTB*p

0.8 pTB*p

pTB* p . pTr
if pTr < 0.2pTB*p

(5-17f)

Here, Ih is the set of holonomic constraints as explained in the next subsection. The

matrix, B q, is fast scaled by the factor I¢ as recommended by Luenberger (Reference 56).

For a quadratic programming problem where the true Hessian of the Lagrangian function

at the optimum is H, then defining t: in this manner guarantees that the range of

eigenvalues of BH "1 spans unity at each iteration. Furthermore, the condition number of

(BH "1) will be non-decreasing which is desirable from a numerical standpoint. In theory,
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the specification of q above ensures that ff B is initially positive definite then it remains
so after the updating procedure. However, this is not necessarily true in the presence of
round-off error. Specifically, the last term in Eq. (5-17a) is always positive semi-
definite. However, numerical differencing between the first two terms can introduce

sufficient error to render Bq +1 non-positive definite. Hence, the expression is modified

slightly by adding small positive terms to the diagonal elements of B:

The entries of this additive diagonal matrix are identical to the diagonal components of
the second term on the R.H.S. of Eq. (5-17a) scaled by a factor of 0.01. The manner in
which information of the cost function and constraint derivatives from preceding

optimization steps is implicitly incorporated into Bq is apparent from the definition of wq.
During the course of the optimization, round-off error and higher order contributions
from the constraints and cost function derivatives arc also accumulated in B. Thus,

periodic resetting of the B to a scaled identity matrix is recommended and is done in the
code every 2n-2 optimization steps (resetting B every n steps can occasionally slow
convergence) and also when convergence to the optimum is detected.

The preceding construct for the matrix B guarantees that the generated matrices Bq
remain positive definite throughout the optimization provided that the initial matrix,

B0>0. This is true regardless of whether the true nonlinear cost function, J, contains
maxima or saddle points. Under certain assumptions on the convexity of the objective
function and constraints (References 54, 55) it is proven that superlinear convergence

results when using this update formula. The sequence, Bq, need not converge to the

actual Hessian of the Lagrangian at the solution. Instead, the projection of Bq unto the
tangent vector space generated by the linearized acting constraints converges to the
corresponding projection of the true Hessian. Or symbolically, if the optimum solution is

denoted by ( X*At*._.* ) then

lim zT[VxxL(X*,/U*,___*) - Bq]z = 0 (5-19)
q_-

where, the Lagrangian is defined in Eq. (5-12), and Z is any vector lying in the space
generated by the active constraints:

Vgj(__.) , jejA and Vg_(_.) , k=l ..... m¢ (5-20)

where the setof activeinequalityconstraints,jA={j: gj=0 ,j=l,...,mi}.

5.2.3 Distinction between holonomic and non-holonomic constraints

The set of constraints,lh,appearing in the summation of the constraintsin Eq. (5-

17e), is the subset of the complete set of constraintsthatare holonomic. The update

formula for Bq assumes constraintsof the form Eq. (5-8)which arc functionsof state,X,

and possibly other parameters which arc fixed during the optimization process. These

constraintsmay be thought of as global constraintsin thatthey form well dcf'med and

fixedhypersurfacesinthe statespace. Constraintsmay alsobe statedin differentialform
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which in the present context implies that the constraints are expressed in the form, dgj(X,

A_).g0 or dgk(X, AX_.)=0which may be regarded as local constraints imposed at a given
optimization step but which may change between steps. When such constraints are
integrable so that they can be expressed in the form gj(_O and gk(_=O res_tiyely
then they are termed holonomic. When no such integrated form exists, mey are ctassifiect
as non-holonomic.

Examples of holonomic constraints applied to the hover optimization task include the
specified upper and lower bounds on 2L limits on the nodal twist, or equality and

inequality constraints on power and/or thrust. Examples of non-holonomic constraints
include move-limit constraints, changes in nodal twist, and, most significantly here, the
equality constraints derived from the wake analysis. The wake equations are expressed in

terms of the changes in collocation point positions, Ax, and bound circulations, A_.
These perturbations are determined in the optimization analysis and used to update _ and

3_. However, during the subsequent EHPIC/H RO analysis where the wake is re-

converged, x,. and 3_will generally change, i.e., the values of _ and _differ between calls
to the optimization process with the discrepancy being due to nonlinearities. Therefore,
these constraints are not included in the update formulas. Similarly, the move limit
related inequality constraints are not used for the Hessian matrix update. However, when
the solution is sufficiently close to a 'hard' bound (upper or lower limit imposed on the
variable) so that it forms one of the boundaries of the feasible region then the associated

inequality constraint now is used in the update equation for Bq. Naturally, all of the
constraints must be retained in the SQP optimization in order to define the feasible
region.

5.2.4 Extensions to SLP

The SLP algorithm utilizes the same simplex subroutines as the SQP scheme.
Beyond the modifications made to the simplex algorithm itself, the chief modification
that has been made from the Phase I algorithm is additional logic for the sizing of the

move limit, Ax_ ax, associated with each xi. The rationale is to retain constant size move

limits as long as the design point is heading towards the optimum. If the optimum
solution is fully constrained (i.e. lies at the intersection of a total of n linearly
independent constraints) all is well since the LP solution will then coincide with the
actual nonlinear solution. In general however, the optimum solution may not be fully
constrained and when one is sufficiently near the optimum such that the optimal design
point lies within the feasible region, the sequence of points obtained via SLP from there
on oscillates about the optimum essentially bouncing between the move limits defined for
the design variables. Thus one has obtained the optimum solution only to within the

resolution defined by the Ax_naXand to increase the accuracy of this solution the

AxmaXmust then be reduced. This is easily done if one is able to ascertain when the

optimum lies within the feasible region surrounding the current design point. This is
accomplished by keeping track of the design changes. Specifically, the two most recent
design points are stored and if all of the design variables are observed to remain within

the region defined by X + A X max then the move limits are reduced, i.e., if

Vi, hons t
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5.3 Application to Rotor Design Optimization

The implementation of the sequential optimization techniques outlined above,

amounts to specifying a design vector, d, together with the desired cost function, J,
constraints, gi, and their derivatives as input to the optimization algorithm. The design
vector, d, is determined by the user in the optimization input file and consist of the

parameters that specify the undeformed blade geometry. These presently include sweep
distribution, twist distribution, anhedral distribution, chord distribution, and collective.

The coding for blade radius and cutout optimization is also in place but their use as
design parameters is not recommended at present. The equations used in the
EHPIC/HERO wake analysis form a set of equality constraints in the optimization
analysis. In many cases, the equality constraints associated with the wake equations can
be solved directly to eliminate some of the variables thereby greatly reducing the
dimensions of the optimization tableau. These topics together with the objective
functions and constraints that may be applied are examined in the following sections.

5.3.1 Description of available objective functions

The user is offered a selection of objective functions to be minimizecL In the present
version these are restricted to thrust, induced power, profile power, or combinations of

these. Objective functions associated with structural properties can also be formulated to
minimize maximum stresses or deflections. However, structural optimization has not
been included as an option for several reasons. First, the focus of this effort has been
upon the aerodynamic aspects of the hover problem and the purpose of including a
su'uctural modeling capability is to improve hover prediction for re.a1 rotors. To that end,
a structural model that predicts the blade deflections with an accuracy that is consistent
with the amount of detail contained in the geometry specifications, is adequate. Hence,
for example, the number of finite elements is commensurate with the number of blade
segments. This also allows a concise structural specification file where the major blade
stiffness and mass properties are characterized in terms of area integrals. Finally, the
model can be constructed very efficiently which is advantageous when determining the
design related derivatives in the optimization analysis since the stiffness matrix and nodal
forces must be recomputed for each design perturbation in order to account for
deformation effects (see Chapter 4). Second, it is judged that a serious approach to the

task of stmcua'al optimization requires a more detailed structural model in order to obtain
accurate estimates of the blade stresses. This requires specification of skin thickness, and
other localized geometry information rather than the integrated cross-section parameters
used in EHPIC/HERO. Finally, the structural optimization task is constrained by other
considerations not directly relevant to the hover problem. Notably, the modal

frequencies and blade dynamic response in forward flight are expected to be more
significant in guiding structural optimization.

Therefore, we have sought to furnish a series of objective functions which represent

integrated aerodynamic performance parameters deemed to be of most interest to
potential users. At present the fundamental parameters are the thrust, T, induced power,
Pi, and profile power, Pv- The user selects the objective function by specifying the input
parameter KOBJ(1) as fbllows (see Reference 12):

Q_ration Performed

1,11
2, 12

Minimize Total Power, PT = Pp+ Pi
Maximize Thrust, T
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3
4

2O

3O

Maximize Figure of Merit, "_-CT 3/2 / 2CQ.
Maximize Propulsive Efficiency, CT/CQ.
Multi-objective minimization of both thrust and total

power
Multi-objective optimization of combination of thrust
and induced and profile Power contributions.

where CT=T/(pr_2R 4) and CQ=(Pi+Pp)/(pr_2R5). The cost functioncombinations for
KOBJ(1)>_20 arc specified below. It suffices here to note that these involve combinations
ofT, Pi, and Pv. Then it follows that all options for KOBJ(1) arc constructed from one or

more of the functions, T, Pi, and Pj_, which must bc supplied in the EHPIC/HERO
analysis along with the first order denvatives which are calculated by finite differencing.

Except for options KOBJ(1)=3,4, the objective functions appear to exhibit weak

curvatureso thatthe design tendstoprogressindefmitclyalong a path of steepestdescent.

This issimilarto the problem encountered in linearprogramming procedures where the

objectivefunction islinearand unless suitablyconstrained,can returnoptimal designs

with infinitevalues. Itisclear,for example in a power optimization calculation,that

unless a lower bound upon thrustis imposed, the design will move in a directionthat

reduced thrustalong with thepower leadingto zero or negativethrustlevels.To properly

pose the optimizations,each optionof KOBJ(1) alsoimplicitlyadds constraints:

KOBJ(1) Applied Constraint(s_

1 T=T

3,4 None

11 T _ Tspec
12 PT _ (PT)spcc

20 T> Tspcc and PT<(PT)spcc
30 T _ Tspoc , Pi _ (Pi)spec, and Pp < (Pp)spec

where (')spccisa specifiedlevel(defaultlevelscorrespond tothe initialdesign).

5.3.2 Choice of multi-objectivefunctions

A multi-objective design task is generally approached by constructing a global

objectivefunctionfrom the singleobjectivecriteria.The simplestform issimply a linear
combination of the constituentcostfunctionsand utiliz.cthisas the costfunction,J,in the

same optimization procedure employed in the single objective case. A preferable

approach isto combine the singleobjectivefunctionsin a possibly nonlinearfashion so

that the resulting global cost function represents a physically meaningful entity.

Examples of thisarc the optionsKOBJ(1)=3, 4 where the thrustand power arc combined

nonlincarlyto form the figureof merit and propulsiveefficiency.Often, however, such

convenient combinations are not obvious, particularlyin multi-disciplinaryoptimization.

Therefore, unless or untilglobal optimization cost parameters arc available,the linear

combination of single objective functions is arguably most useful duc to ease of

implementation and tractability,and since sensitivityanalyseswhich help gauge relative

trade-offsbetween the various constituentcost can bc straightforwardlyconducted for
thiscombination.
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If the single objective cost functions are denoted by Ji then the composite cost
function,

JG = _ wi Ji (5-21)

where the wi are weighting parameters that are intended to reflect the degree of
importance attached to minimizing the constituent, Ji. The specific forms for the multi-
objective options of KOBJ(1) are:

Tma x - T PT" (PT)min

KOBJ(1)=20: JG=Wl Tmax-Tmin + w 2 (PT)max_(Pr)mi n (5-22)

Tma x -T Pi - (Pi)mi n

KOBJ(1)=30: JG = Wl Tmax _ Train + w2 (Pi)max -(Pi)min

(5-23)

where T= thrust, PT=tOtal power, Pi=induced power and Pp---p_file power. The (')min
and (')max values axe either specified by the user or set to default values in
EI-IPIC/HERO. Their purpose is to scale the dimensional quantities so that the Ji have
roughly equal influence upon the overall JG. Ideally, ff the wi were all equal, then the Ji
would also be equal in the globally optimal design. In practice best guesses to these
ranges axe usually made. One alternative (Reference 57) is to perform the single
objective function minimizations separately. For each design thus obtained, gLk say,

EI-IPIC/HERO may be used to evaluate T(.d.k), Pi(d.k), and Pp(d.k). Then

=max T(a ) ,and Tin.,

An important consideration is the selection of the wi. This is a non-trivial task with
the goal of choosing values for wi that leads to an overall qualitatively q_est' design. It
often happens that one of the Ji dominates and the optimal design is similar to the

corresponding single objective case. A more serious effect is that usually some of the Ji
axe 'sacrificed' in order to allow decrease in some other Ji so that a net decrease in JG is
attained. Problems arise if the change in the numerical magnitude of Ji is small in
comparison to the other Ji, but that this change represents an unacceptable increase of that
cost. Essentially, this reiterates the desirability of a global cost function which is derived
from physical considerations (e.g. figure of merit; propulsive efficiency) since it is

otherwise not clear what JG is intended to represent. Hence it is assumed that this issue
has been carefully considered by the user who is required to specify the wi in the input
file.

One additional safeguard is supplied however which prevents the individual costs
from exceeding specified upper bounds. Thus the following inequality constraints are
enforced for,

KOBJ(1)=20:

70



J1 = Tma x - T
Tmax -Train

< 1 PT'(PT). n 1
J2=(PT)m -(PT)mm (s-24)

KOBJ(1)=30:

Jl = Tm_ - T
Tma x - Tmin

< I Pi "(Pi)min < 1

J2 = (Pi)max - (Pi)min

PP" (PP)min <1 (5-25)

In fuzzy optimization terminology, the Ji may now be regarded as membership functions.
The combination of the normalization terms and the limiting effected in the preceding

equations implies that the Ji a [0, I]. It is assumed here that by suitable choice of (*)max

and (*)min the individual JiL>0. Thus the individual _st functions arc placed on an equal

footing with the other imposed constraints. This guards against the 'sacrifice' behavior
mentioned above and tends to produce qualitatively better designs that give overall

improvement in at least some of the Ji while ensuring that the others do not become
unacceptably large.

5.3.3 Incorporation of the wake constraints

The equalityconstraintsupon linearizednonnal_normal velocitiesand the blade

quadrilateraldownwash velocitiesare directlyavailablefrom the EHPIC/HERO analysis

and are expressed as,

(5-26)

These constraints play two roles in the optimization analysis. First, when enforced, they
guarantee that to within a linear approximation, the post-optimization design maintains
zero downwash and collocation cross-velocities as required for the converged wake
solution. In practice, the inherent nonlinearities require that the wake solution be
re,converged and the post optimization design solution provides a very good first guess to

the converged state. Second, these constraints serve to linearly couple the design
perturbation with the wake changes so that the total influence of a given design variable
upon the constraints and cost is accounted for. In EHPIC/HERO, the design related
influence coefficients arc effectively partial derivatives with the collocation points and
blade circulations held fixed. Thus, for example, the thrust coefficient, Td, for design
variable, di, is computed by perturbing the blade geometry con'csponding to di and then
forming the finite difference of the thrust. Thus,

(5-27)
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To determine the physical change in thrust that occurs when d is perturbed, the total

derivativemust be evaluated implying thatthe changes in the wake, Alle,and bound

circulations, AZ must be taken into account. Thus,

or,

dd- Ax.c+

dT

_-= Tx A_ + T_'A:_+ TO Ad

(5-28a)

(5-28b)

The wake constraintscan now be used to solve for the wake position and bound

circulationperturbationsthattakeplace forperturbationAd:

A = kQw..,<Q,vrJ kQwdJ Zl_d
(5-29)

so that the physical thrust change due to Ad is,

Q I_,'T,iQ,,,,IL,
I.l,rJ I,QwdJ)--

(5-30)

This is extremely important since in general the second term in (-) of the preceding
expression dominates implying that the chief contributions are due to the related wake

and bound circulation changes. In fact, it is the matrix partition, Qwg, which accounts for

most of the contribution to AT. This has been observed to be generally true of

aerodynamic parameters other than thrust (e.g., power).

The set of linear equality constraints, Eq. (5-26), can either be entered into the
optimization analysis directly in forming the constraint set, g, or else used to eliminate

the variables Aac and A_ via Eq. (5-29) in a pre-processing step prior to the optimization

routine. The advantage of the latter approach is a drastic reduction in the dimension of

the simplex tableau since when Eq. (5-26) is entered directly in the optimization routine,
it consumes most of the tableau. The drawback is that move limits can no longer be

imposed upon A2k: and A_/and so the move limits imposed upon the design variables may

need to be reduced to ensure that the subsequent wake analysis reconverges. Reduced
move limits imply slower progress toward the final design.

The EHPIC/HERO optimization parameter, KOPT, allows the use to select between
these options:

KOPT=I -

KOPT=2 -

KOPT=3

Use the fullwake equations to define equalityconstraintsin the

optimizationroutine;

Use the fullwake equationsto eliminateAlk_and AT_and update the

designvariablerelatedinfluencecoefficients(e.g.,Td, etc.)

Same as KOPT=I except thatonly the downwash equations are

retained and Qwx is assumed zero. Thus the constraints

corresponding to the wake analysis reduce to:
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.Q = [Qw? Qwd A

KOPT---4 - Use the reduced equations of KOPT=3 to solve for A_. Then,

Axe=0

and A_ =- [ Qw_, ]" 1 [ Qwd ]Ad

The particular option to use will depend on the specific blade configuration and wake

analysis used. Increasing KOPT results in fewer computations but tends to be less robust,
particularly for analysis involving a large number of wake points.

5.3.4 Incorporation of structural deformations

The constraints equations, Eqs. (5-26), and the objective function definitions assume

that those influence ecefficients identified with the design perturbations, Ad, take into

account any structural deformation effects. When structural deformation is present, one
distinguishes between the undeformed geometry which is defined by the design variables,
and the deformed geometry used in the wake analysis. This is most important when
determining the various derivatives with respect to the design variables (e.g., Qwd, "I'd,
etc.) by the finite differencing technique. If we denote here by dO anY variable used to
specify the undeformed geometry and by ds, its value in the deformed case, then is it not

generally true that perturbing do leads to an identical perturbation in ds. i.e., in general,

Ado_A_ due to change and reorientation of the deformation vector. Furthermore, a

perturbation in a single component of dO alters the deformed geometry of the complete
blade. Take, for example, the undeformed sweep of a given segment iseg,
UNDSWP(iseg). Perturbing UNDSWP will reorient the force due to blade rotation, alter
the stiffness matrix which has major contributions from rotational stiffening, and
consequently change the deformation state and the deformed geometry for the whole
blade. Note also, that even if the actual aerodynamic loading were to remain constant the
re,orientation of the blade results in a different nodal force vector and hence deformation

state. The difference, Ad0-AO.s, naturally depends upon the material blade stiffness.

However, this difference can lead to significant changes in some of the derivatives w.r.t.
to design, (')d. This is especially true of the twist gradient, where the tip twist change can
be twice that due to the rigid body perturbation alone for typical blades, thus causing
readjustments in these (')d on the same order as (')d itself. This corresponds to the
classical theory of torsional divergence in acroelasticity.

In principle, the state vector can be expanded to include changes in the deformation
state, so that the equality constraints are augmented to:

f qtI o Qqsoqli c(5-31)

Here, the residual Af = f - Ks, and the new influence matrix partitions, Qqs, Qws, Qfx,

Q and Qfd represent the change in the quantity corresponding to the first shbscript due
f_ . • , * • * •

to perturbauons m the state associated with the second. This approach was originally
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implemented during this effort. However, as mentioned in Section 4.6, the calculation of
the new influence matrix partitions is rather lengthy and cumbersome and was eventually

dropped in favor of the approach below.

Rather than conduct a linearized analysis involving the structural deformation
changes, it proves far more efficient to perturb the undeformed design component,
re,compute the structural properties and loading, update the deformed geometry, and then
calculate the various aerodynamic derivatives (Qqd, Td, etc.) based upon this geometry.
The computation required to conduct the complete structural analysis and update the
deformed geometry is a small fraction of that entailed in computing the wake related
influence coefficients. Thus, in essence we define:

(5-32)

so that _ and _ are held constant, but _i is allowed to vary. Fortunately, this is a situation

where the actual nonlinear analysis proves more efficient than the linear approximation
without lossof robusmess inthe computation.

In order to calculatethe new deformation,the aerodynamic loading must be known,

but thisis not availableuntilthe deformed geometry is available. In theory,a time
consuming seriesof sub-iterationsis required where the deformation and loading are

updated untilconvergence isattained.In the presentimplementation, the deformation is

computed only once for a given design perturbationusing the aerodynamic forcesof the

unperturbed design. This isjustifiedin lightof the factthat most of the change in

structuraldeformation willbc due toreorientationof the segment axes and corresponding

changes in the localto global transformationsmatrices used in obtaining the stiffness

matrix and nodal forces. Furthermore, thisisconsistentwith the linearapproximations

used elsewhere in derivingthe firstorderderivatives.

5.3.5 Twist constraints

The dominant design variable in most optimization computations is the twist gradient,
TWG(iseg), over each segment, iseg. The total twist at the outboard end of iscg,

iseg

TWR(iseg + I)= _ TWG(jseg)* SL(jscg) (5-33)

jseg=l

where SL(jseg) is the segment length. Since TWR is an accumulative function of the

TWG variables lying inboard it is possible that excessive changes in TWR occur,
particularly as one approaches the tip, rendering the lincarization assumption invalid, or
destabilizing the subsequent wake analysis. In order to prevent such changes inequality
constraints are adjoined to the optimization analysis limiting the twist change according
to:

ATWR(iseg + 1) = ,_t_ ATWG(jseg) * SL(jseg) < 0.3" (5-34a)

jsegeld
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iseg

ATWR(iseg + 1) = _ ATWG(jseg)* SL(jseg) > -0.3 ° (5-34b)

jseg_Id

where iseg ranges from 1,...,nseg and belongs the set of segments, Id={iseg:

TWG(iseg)_ di}. i.e., if some of the TWG variables are held fixed, such as when orfly the

outboard segments are allowed to vary in the analysis, then those fixed variables are

skipped in the above summations.

5.3.6 User supplied constraints

Preliminary coding designed to incorporated user defined constraints has been
developed (but not yet tested). It takes the form of a subroutine which allows the user to
define inequality constraints and equality constraints as functions of the design variables,
di. The intended goal is to permit the incorporation of constraints derived via external

analyses such as other forward flight studies or structural dynamics considerations. It is
assumed that the functional dependence of these constraints upon the di can at least be

approximated, say by polynomial curve fitting, so that the constraints and their first
derivatives can be defined based upon the information supplied to the subroutine. In
principle, cost functions could also be user defined and used to augment one of the
KOBJ(1) options. Instead, the anticipated manner of incorporating alternative cost
functions will be limited to constructing inequality constraints such as those in
Eqs. (5-24) and (5-25). This follows from an assumption that accurate evaluation of these
external cost functions is better accomplished using independent models, but that their
inclusion in a EI-IPIC./HERO optimization might be desirable to prevent designs yielding
unacceptable values for these cost functions.

5.3.7 Summary of optimization formulation

The general optimization problem that may be formulated within EHPIC/HERO is
summarized:

= J + JxA_x + J_, A_.T + JdAd}Minimize { Cost

subject to:

0 > -gi + Qiz A_x + Qir A...y + Qid Ad

{" t I'"0qd, . ,,w = = Qw,Q.d/l"vr

li <xi < ui, i=l,...,n
(5-35)
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The subscripts (')i and (-)e refer to inequality constraints and equality constraints (beyond
those associated with the wake) respectively. These include constraints upon the twist,

Eq. (5-34), and any constraints input by the user.

If the user sets KOPT_3, then one solves for {A_ A_ }"

{A_}--5Qqx Qq'T'l'Qqdl,,,_kQw Q,,,,rJLQ.dJ -
(5-36)

using Gaussian elimination. The optimization task is transformed by substituting

{Axe A:t } back into the remaining equations:

Minimize { Cost = J + Jd* At1}

subject to:

0 > Qi + Qkl*'_[

Tsp_-T J LTd J

1i _<Ad i < ui , i--1,...,NDES

Ad_

(5-37)

Qid,_ Qid Qix Qi7 Qqx  q,T'rQ :1 (5-38)
= "Q x Q r| QwrJw oo: L,,

[Td J T7 J

5.4 Numerical Considerations

For certain options of KOPT, the simplex algorithm and BFSG update procedure can
involve large arrays containing several hundred rows and columns. For problems of this
size, numerical accuracy considerations become an important issue. Some of the steps
taken in this regard are summarized in Section 5.4.1. Another consequence of such large

problems is the increase in the computational time required to both compute the
constraint derivatives and to perform the pivoting operations in the simplex scheme.

Thus, various options that allow some of these computations to be skipped have been
explored and are presented in Section 5.4.2. Finally, convergence tests are given in
Section 5.4.3.

5.4.1 Treatment of round-off error

An important consideration in implementing the SLP and SQP algorithms is the
presence of round-off error. This is p.articularly true of larger problems involving several
hundred constraints (e.g., incorporauon of the equality constraints corresponding to the

equations in the EHPIC/HERO code relating the wake point positions, velocities, etc.).
Several steps were taken in order to attenuate or else accommodate the effects of round-
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off error. Prior to the optimization analysis, the simplex tableau is preconditioned by

rescaling all entries so as to be of comparable magnitude. First, for each row the entry
with the maximum absolute value is found and the row divided by that entry. The same

is then repeated for each columns. The latter operation is tantamount to rescaling the
state variables, xi, and is used in determining correspondi.'ng scaling factors. Thus,
denoting the simplex tableau entries by aij, the scaling operauons proceed as:

aij ( ---aij , r i =m.ax{laijl } , i=l .... ,nrow (5-39a)
ri J

aij ("" aiJcj ' Cj -- m_x{. I aij I } , j-1,...,ncol (5-39b)

where for linear programming,

nrow = m+l ; ncol=n+l (5-40a)

and for quadratic programming,

mow= m+n+l ; ncol=2n+m+l (5-40b)

The factor, 1/c i, is a representative scale for variable, xj, and is utilized elsewhere in the
optimization algorithm when conducting comparison operations and convergence tests.

The use of double precision for the complete tableau has the undesirable consequence
of a four-fold increase in memory requirements. Therefore the use of double precision is
restricted to only certain key variables and parameters used in the accumulative summing
operations. In particular, double precision is employed for the auxiliary cost and reduced
cost coefficients used in f'mding a feasible solution and, for quadratic programming

problems, in satisfying the Kuhn-Tucker. Finally, consideration of round-off error and
tableau dimension is made when specifying the tolerance and convergence parameters
used in the optimization algorithm.

5.4.2 Efficiency improvement options

The additional computation that must be performed for optimization is categorized
into 1) calculation of the influence coefficients pertaining to the design variables, and 2)
execution of the SLP or SQP routine to determine the improved design. In many cases,

the various influence coefficients change slowly with the design. Furthermore, unless the
design is near-optimal, the design changes at each optimization step are the same, i.e.,

A2_IA2_II is constant. These fortuitous properties can be put to good use in diminishing

the computational cost. By taking larger steps in design space between optimization
calculations and design related influence coefficient evaluation, the total number of
operations is substantially reduced, with an accompanying trade-off of a possible
lessening in robustness. Rather than effeeting the full design change immediately after

A2_ has been determined, this design change is implemented over a series of fractional

steps. The wake analysis is reconverged during each fractional steps. This improves the
robustness of the overall computation since the linearity assumptions implicit in the
iterative solution in the wake analysis are more likely to be valid over one fractional step

than over the full design change. To this end, the user supplies the input parameters,
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KWIKN andNFRAC, where NFRAC is the number of fractional steps and KWIKN has
the following meanings:

KWTKN--0

KWIKN=I

-No modification of the optimization procedure. The influence
coefficients and the optimization calculation are executed every
time the wake analysis is re-converged.

- The influence coefficients pertaining to the design variables are
updated once every NFRAC steps, but the optimization routine is
executed every time the EHPIC/HERO wake analysis has

re,converged.
After every NFRAC steps, the influence coefficients corresponding
to the design variables are re-evaluated. The move-limits are
expanded:

max
Aximax<... NFRAC* ax i

and the optimal design change, A_ computed. The design change

is then implemented over the next NFRAC steps as:
1) k=l

1
2)Xk Xk-1+ NFRAC AX
3) Reconverge wake analysis

4) k=k+l

5) If k < NFRAC go to step2

The simplex tableau is stored in the form suggested by Kitnzi (Reference 57) which

affords a m by m reduction in tableau size for the LP case and (re+n) by (re+n) reduction
in the QP case. An by n block can be eliminated in the QP situation by recognizing that

the tableau coefficients for the Lagrange multiplier vectors, ttl and tt2, are identical

except for sign. This is due to the twin observations that: 1) the initial tableau entries

corresponding to I.tl and g2 are simply [-In] and [In] respectively so that the above

relationship holds at the start of the simplex manipulations; and 2) the pivoting operations
basically consist of row manipulations where each entry in a row is operated upon in the
same manner. Thus rows may be multiplied by the same scalar, and scalar multiples of a
row may be added to another. It thus follows that columns that are multiples of each
other retain that property subsequent to the pivot operations and that furthermore, the

constant of proportionality remains unchanged.

5.4.3 Storage requirements

For SQP optimization, storage space on the order of (2n+m) by (n+m) is needed
where n is the total no. of variables under consideration (including in addition to the
vector of design variables, the vector of bound circulation perturbations and normal/bi-
normal wake point perturbations unless these are explicitly eliminated via Eq. (5-36); and
m is the total no. of equality and inequality constraints imposed upon the problem (not
including upper and lower bounds imposed upon the variables). The required storage
arises from the fact that there is a total of 3n+m variables comprised of the n state

variables, xi, 2n Lagrange multipliers, llli and I,t2i, associated with each of the lower and

upper bounds of xi, and m Lagrange multipliers, _.j, associated with the imposed

constraints,gj;and m+n constraintsincludingthe m oril,/inalimposed constraintsand the

additionaln Kuhn-Tucker constraints.The simplex tableaucolumns corresponding to _tli
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and g2i differ only in sign and so only one of the columns must be stored (see Appendix
A). This reduces the tableau column size from (3n+m) to (2n+m).

The SLP approach requires storage space on the order of n by m. Both the SLP and
SQP schemes implicitly enforce the upper and lower bounds on xi as explained in
Appendix A. Thus elimination of the 2n constraints required during the Phase I effort to
enforce these bounds are no longer necessary.

5.4.4 Convergence criteria

The selection of suitable convergence tolerances has proved to be a non-trivial task in

the multi-dimensional optimizations considered here. The different scales for the design

variables (and the x, and _) are determined in the EHPIC/HERO code and taken into

account in convergence tests. However, the chief obstacle in deriving generally
applicable convergence tests is due to the large disparities in gradients and curvatures for
different cost functions and designs. For example, the thrust is typically one or two
orders of magnitude more sensitive to changes in the twist gradient than to sweep

perturbations. Thus it can happen that the twist distribution has essentially converged to
the optimal design, while the sweep distribution is still undergoing significant
modification. A test based upon changes in cost per step might cause premature
termination of the optimization since the changes in thrust level are 'small' in comparison
to the changes that occurred while the twist distribution was still changing significantly.
Thus consideration of the local gradients should be factored into the convergence tests.
Other elements that complicate the definition of an appropriate convergence criterion
include the possibility of inaccurate approximations to the Hessian matrix, [B], in SQP
(can be countered by resetting [B] near a prospective minimum), possible discontinuities
in some-of the first order derivatives which can arise in implementing a stall model, and,

importantly, round-off error.

The following 'classical' convergence tests are available in EI-IPIC/HERO and are
based upon the user supplied tolerance parameter, TOL. The optimization terminates if
any of these tests are satisfied. If the user deems the optimization to have terminated
prematurely, then TOL may be reduced and the restart option of EHPIC/HERO invoked.

a) IJq-Jq-ll < TOL*Min. {IJ01,R}

b) IJq-Jq-ll < TOL*Min. {IJqI,R}

mi {
d) _ _< TOL

SO(i)

e) q > qmax

< TOL

, for 3 successive optimization steps

, for 3 successive optimization steps

(forSLP optimizationonly )
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Here, Jq is the objective (or cost) function at optimization step q, SC(i) is a representative

scale computed in EHPIC/HERO for the design variable under consideration, xq is the

value of the i-th design variable at optimization step, q, Ax_ ax is the move limit for the i-

th design variable and is initialized to DSDMAX at q=0, qmax is the maximum allowable
number of iterations, and the parameter, R, is an estimate of the reduction in cost that can
b¢ achieved for the given move limits, DSDMAX(i), and is computed from

0
R = 0.2 * _* DSDMAX(i)

i dxi

(5-41)

As explainedinsection5.2.4,when employingSLP themove limits,Ax_ ax,arereduced

when proximitytotheoptimum isdetected.This processcontinuesuntilcriteriond) is
satisfied.
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6. RESULTS OF SAMPLE PROBLEMS: ROTOR PERFORMANCE

6.1 Previous Validation Work

As noted in the discussion above, meaningful design optimization requires that
the methods used to model rotor performance produce accurate results. Extensive
performance correlation studies were carried out during the development of the original
EHPIC Mod 0.0 code (Ref. 9), and additional studies were executed by NASA personnel
(Ref. 6) as well as by users of the EI-IPIC flVlod 1.0) version fReE 7). These correlation
studies involved tests of many different rotor configurations, including two-, three-, four-,
five- and six-bladed helicopter main rotors, three tiltrotor configurations, and several tail
rotors. A wide range of designs were examined including tapered planforrns, swept
planforms, twisted planforms and combinations of each. Nordincar as well as linear twist
schedules were investigated including the very high twist levels characteristic of tiltrotor
blades. Several rotors in ground effect have also been studied (Ref. 10, 11). Finally,
recent studies (Ref. 60) of more limited scope have shown that EHPIC compares quite
favorably and in some respects improves upon the performance results obtained using
much more CPU-intensive CFD analyses.

These studies have concluded that the EHPIC code produces very good
performance prediction across a broad range of rotor designs. As with any numerical
analysis, the results obtained are sensitive to certain key input parameters. However, the
results described in Reference 7 were particularly encouraging on this point, in that
calculations can'ied out over several very different rotor systems produced consistently
good correlation for a fixed set of inputs - i.e., no use of numerical "dials" was necessary
to obtain good results in particular cases. One of the objectives of the present study was
to ensure that the changes implemented during the development of the HERO analysis
produced the same consistently good performance correlation as its parent EI-IPIC code.
Some changes in the results were unavoidable given the necessity of restructuring the
code to adapt to the requirements of carrying out performance optimization. Also, as
previously discussed, several improvements in the aerodynamic model have been
implemented to eliminate particular limitations of the baseline analysis. The correlation
studies that follow are intended to illustrate the fundamental consistency of the
optimization hover performance model with the original EHPIC code as well as to
highlight the improvements made.

In each of the calculations below, the EHPIC and EI-IPIC/HERO performance
computations used the same number of trailing filaments, extent of free and prescribed
wake, vortex lattice discretization, and core modeling. To the extent that the results of
the two analyses differ, the differences are analyzed in each particular case. Unless
otherwise specified, standard atmospheric conditions are assumed corresponding to a
speed of sound of 340 m/s (1117 fps) and atmospheric density of 1.205 kg/m 3 (.002378
slugs/ft3). Since NASA is currently operating the Mod 1.0 variant of EHPIC,
comparisons of HERO and EHPIC here are made with the 1.0 version.

6.1.1 NASA/NACA test rotors

A data set from an NACA rotor testedin the 1950's provides a simple
configurationwith which to startthe presentcorrelationstudy. The firsttestrotor
examined was that described in Reference 61, which described integrated performance
results on a two-bladed rotor with a radius of 8.17 m. (26.8 ft.) and a constant chord of
0.58 m. (1.91 ft.). The blades featured 8 degrees of linear twist and were tested at tip
Mach numbers of 0.28 and 0.66. An NACA 0012 airfoil section was used across the full
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span of the blade. The wake model here used six f'flaments trailing from the rotor blade.
Since the test was conducted on a whirl stand elevated 1.5R above the ground, the ground

plane model was invoked to correct for the effect of the image system of vortices. The
blade model used 30 vortex quadrilaterals along the span and one chordwise.

Figures 6-1 and 6-2 show the correlation achieved for both tip Mach number
cases. The correlation is good across most of the range tested, though some differences

start to appear at high thrust. Similar results were obtained with the original EHPIC
code, as described in Reference 9. It is instructive to compare the details of the results
obtained with EHPIC Mod 1.0 against those obtained with EHPIC/HERO since some
modifications have been made to the basic performance model. For simplicity, a case
with Map = 0.28 is chosen. Figure 6-3 shows the results of the integrated power and
thrust results for runs using EHPIC MOd 1.0 and EHPIC/HERO over a range of
collectives. The predictions of the two codes are very close, but some small differences

do appear to be present.

Further details are provided by a close examination of a single case. For a root

collective pitch angle of 14 degrees, the following integrated performance results were
obtained:

EHPIC/HERO EHPIC Mod 1.0

CT 0.003239 0.003261

CQi 0.0001449 0.0001429

0.00004454 0.00044460.0001895 0.0001875

Thcsc resultsindicate the typical size of differences in performance predicted by

EHPIC/HERO and EHPIC Mod 1.0. The profilepower calculationyieldsessentially

identicalresults,as would be expected given thatthe same airfoildrag characteristics
wcrc read in,though in a differentformat in the new code. Differencesinthe thrustand

induced power are larger,and are attributableprimarilyto shiftingthe vortex filament

release points to the trailingedge as described in Section 2.3.1. This change was

necessary for the implementation of the high-resolution wake roll-up calculation

described in Section 3. Figure 6-4 shows the distributedthrust,induced power, and total

power for the two calculations.Most of the differencesbetween the two calculations

appear in the tipregion,while the computed loading inboard of roughly 0.85R isnearly
identical.

6.1.2 CH-47B rotor

Performance tests for the CH-47B main rotor are described in Reference 62. The

rotor has three blades, each with a constant chord of 0.64 m. (2.1 ft.) and a radius of 9.14

m. (30.0 ft.). The blades feature -9.14 degrees of linear twist and use a 23010-1.58 airfoil
section. The data in Reference 62 was taken at rotor rotation rates of 230, 240, and 288

rpm. The case examined here is 240 rpm, corresponding to a tip speed of 229.6 m/see
(753 fps).

The wake model used sixfi.lamcntstrailingfrom the span, with roughly 2.5 turns

of frcc wake followed by an additional 1.5 turns of prescribed wake. Thirty vortex

quadrilateralswere used acrossthe span with one chordwise. The integratedperformance

predicted for thiscase is shown in Figure 6-5, indicatinggood agreement up to high
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thrust levels with some deviation beyond that point. The performance predictions are
similar to those obtained with EHPIC Mod 0.0 in Reference 9.

6.1.3 UH-60A rotor

Recently acquired data on an extensively instrumented UH-60A model rotor has
provided a wealth of potentially useful correlation information for study using
EHPIC/HERO. References 63-65 that describe this test were acquired only shortly

before the end of this effort, and analysis and interpretation of the results is still ongoing.
However, certain major results of the computational studies done to date are available and

are presented here.

The model tests described in References 63-65 involved a 8.86 m. (9.4 ft.)
diameter, Math scaled model of the four-bladed UI-I-60A main rotor. The model featured
a chord of .092 m. (0.304 ft.), and was operated at a range of tip Mach numbers between
0.55 and 0.70. This planform features 20 degrees of sweep starting at the 92% radial
station, as well as a distinctive and highly nonlinear twist distribution that includes a twist
_oucket' over roughly the outer 10% of the blade span (the UH-60 twist distribution is
discussed further in Section 7). The particular case considered here is at tip Mach
number 0.65. The blade uses an SC1095 airfoil across the entire span, except for the
'droop nose' SC1095R8 airfoil between 0.47R and 0.82R. The computational model uses
45 equally spaced quadrilaterals spanwise and one chordwise. Six free filaments are
used, with one capturing the wake of the tip region and five used to model the inboard
sheet.

Figure 6-6 shows the prediction of integrated loading for Run 68 of Reference 63.
The power prediction is close over most of the range surveyed, though with some
underprediction of the power at higher thrusts. The prediction of thrust as a function of

collective pitch is likewise close, as shown in Figure 6-7. At high thrust levels,
EI-IPIC/HERO tends to slightly overpredict the actual thrust.

The tests described in References 63-65 involve some runs at very high thrust
coefficient, so it was judged a suitable test case for the static stall model discussed in
Section 2. However, the range of thrust coefficients tested did not in fact pass the Ctmt_
level for the airfoil tables tested, as indicated in Figure 6-8. The computations do show
that the qualitative behavior of the present model is reasonable, predicting a drop-off in
thrust growth with collective (Figure 6-8) along with a rapid increase in power required

(Figures 6-9 and 6-10) once the stall model is activated. (The primary purpose of the stall
model is to limit performance at twist angles above the section stall angle during the
optimization process. Most current planform designs operate far below the stall regime
so the stall model will not affect comparisons with test results.)

As noted above, References 63-65 contain a wide range of experimental
measurements suitable for further correlation studies, though the recent (early 1992)
release of the data has precluded detailed consideration here. In particular, Reference 65
documents measured structural deflections that could be of considerable value in

validating the structural deflection model described in Section 4. It is anticipated that
future validation efforts will include such correlations, as well as studies of the spanwise
loading and wake geometry data contained therein.

6.1.4 XV- 15 rotor

As noted in the wake geometry calculations in Section 3, the XV-15 rotor is a
three bladed configuration with a radius of 3.81 m. (12.5 ft.) and a constant chord of
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0.354 m. (1.16 ft.). The twist distribution features a nonlinear twist distribution with a
total washout of approximately forty degrees across the span. Each blade uses five
NACA 64-class airfoils across the span. The tip Mach number for the cases studied here
was 0.69, and the measured performance is drawn from Reference 45. The same blade
model with 45 vortex quadrilaterals spanwise and 1 chordwise used in Section 3 was used
here, though the present calculations employ eight equally spaced filaments to obtain
good resolution of the spanwise distribution of induced velocity.

Figure 6-11 shows the correlation achieved across the moderate to high thrust
range of most practical interest. The calculations are compared to two different runs from
Reference 45 that bracket most of the range of data taken in the test. The correlation is

good across the range examined, though there is some tendency to underpredict the power
at low thrust levels.

6.1.5 V-22 rotor

Reference 27 discusses performance measurements taken on a 0.658-scale V-22
rotor. Like the X'V-15, the V-22 is a three-bladed rotor with a large, nonlinear washout
across the span, with a total of approximately 40 degrees of twist across the span. The
scaled V-22 rotor has the same radius as the XV-15 but also features a tapered planform,
with the chord ramping down from 0.58 m. (1.9 ft.) at the root to 0.405 m. (1.33 ft.) at the
tip. The tip Mach number for these tests was 0.68, corresponding to a tip speed of 231.7
m/see (759.7 ft/sec) at standard conditions. The wake and blade model were identical to

those used for the XV-15 case. The results obtained here were likewise similar, Figure 6-
12 shows the correlation of integrated performance, again indicating good general
agreement, though with some errors appearing at both the low and high end of the range
examined.

6.2 Performance in Axial Flight

Only limited measured performance data is presently available for proprotors in
high speed axial flight. One of the designs of high current interest in this area is the V-22

rotor, whose performance is discussed in Reference 66. Felker describes the following
closed-form semi-empirical expression for integrated rotor power that has been quite
successful in capturing on-design propulsive efficiency for the V-22 (Ref. 67).

2g

C_= fcC.Qo [(1 + 2_tZ)'V_ + gz + 2_4 In (.1 -_) ]

where f¢ is an empirically-derived compressibility adjustment factor for the profile drag:

fe = [ 1, ff M.75 < 0.63, otherwise /

1 + 42.51 (M.Ts - 0.63 ) + 3476 (M:Ts - 0.63 )4 ]

M.75 = Ma,_/1 +...9__
V 16g2
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In order to test the capability of EHPIC/HERO to successfully analyze rotors in high
speed axial flight this formula was used in place of directly measured performance.

Curves of rotor propulsive efficiency ].tCT/Cp as a function of thrust coefficient were

made for two flight conditions: fast, _ = 0.34 and Mhel = 0.62 and, second, l.t = 0.67 and

Mhd = 0.59.

Since rotor wake effects are very weak in high speed axial flight, very simple
wake models are appropriate for these flight conditions. In this case, five free filaments

with one turn of free wake were used, though the filaments are quickly convected
downstream, behaving essentially as a kinematic wake. With thirty vortex quadrilaterals
across the span, good resolution of spanwise loading could be expected. The integrated

performance results shown in Figures 6-13 and 6-14 indicate that the major features of
rotor performance are in fact being captured. For the moderate speed case shown in
Figure 6-13, the prediction accuracy is good across most of the range, while for the high
speed case shown in Figure 6.14, a consistent underprediction of propulsive efficiency is
apparent. The presence of such a constant decrement suggests inadequacies in the profile
power calculation, possibly in the high Mach number section data for the airfoils used on
the rotor.

Figure 6.15 shows a comparison between predicted and measured performance
for the V-22 rotor in low speed axial flight. A small range of EHPIC/HERO results are

shown at three advance ratios, g = .0236, .0313, and .0381. Only one test data point was

available at each of these advance ratios. EHPIC/HERO shows good agreement at the

two lower values but begins to over-predict the torque at g = .0381. Further test data will

have to be obtained in order to determine whether this trend occurs with increasing
advance ratio or increasing thrust.
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7. RESULTSOF SAMPLEPROBLEMS: DESIGN OPTIMIZATION

This section presents results that illustrate the application of the EHPIC/HERO code
in optimization calculations for rotors in hover and axial flight. The initial focus of
interest is on the problem of power minimization at a given rotor thrust for rotors in
hover. This is the rotary-wing analog to the classical fixed-wing drag minimization
problem that still commands attention today. The power minimization problem is
likewise critical in rotorcraft design because of its importance in sizing the powerplant to
satisfy payload requirements. Here, we analyze several representative configurations to
both illustrate the capabilities of the present formulation and to gain insight into
promising general design strategies.

As noted in Section 5, EHPIC/HERO has the ability to define a variety of objective
functions besides total rotor power. Gross thrust, hover Figure of Merit, axial propulsive
efficiency, and individual components of total power (i.e., induced and profile) may be
selected, as may weighted combinations of these quantities. We will show results of
selected problems executed using some of these alternative objective functions for
hovering rotors, including thrust maximization for a fixed power.

EHPIC/H RO is also suited to the analysis of rotors in axial flight, as discussed in
Section 6. The design requirements of rotors in high speed axial flight (e.g., tiltrotors in
cruise) are distinct from those of rotors in hover. The influence of the wake is much
reduced, so much so that uniform inflow approximations can often be used with some
success, as the discussion of performance results in Section 6 indicates. However, even
though the free wake feature of the present analysis is not as important as in hover, the
liftingsurface/vortexlatticeaerodynamicmodel in EHPIC/HERO can be used to good
effecthere,sincethedesignevolutionof proprotorsoftencallsforswept and variable
chord planforms.The performanceresultsforaxialflightcalculationstodatehave been
promising,and itisanticipatedthatapplicationof the designoptimizationprocessto
rotorsinhighspeedaxialflightwillyieldinformativeresults.

Finally, it should be noted that the purpose of these demonstration calculations was
not to comprehensively exercise the extensive set of design optimization options within
EHPIC/HERO. The design evolution in particular cases is a function of the constraints
imposed, the algorithms selected, and to some extent of the numerical resolution of the
blade and the wake that is compatible with the user's computational constraints. The
immediate objective here is to present calculations that illustrate some of the major
capabilities of the present analysis. As will be discussed, certain broad trends were
observed in the calculations performed to date that appear to represent generally desirable
design strategies for rotor blades, while other cases provoke as many questions as they
answer.

7.1 Sample Calculations in Hover: Rotor Power Minimization at Constant Thrust

7.1.1 Conventional low-twist helicopter designs

Demonstration calculations of performance optimization were carried out on a
planform similar to the UH-60A model rotor analyzed in Section 6, but without the tip
sweep and twist 'bucket' characteristic of that blade (Figure 7-1). The resulting blade was
straight and untapered, with a radius of 4.68 ft. and a constant chord of 0.303 ft. The
resulting twist distribution yields a -16 deg. twist rate across the blade radius. An initial
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condition with thrust coefficient of 0.00664 was selected, which corresponds to CT/(_ Of

0.0805 and a Figttre of Merit of 0.721.

The same wake configuration used in the performance studies of the UH-60A
model blade in Section 6 was used here. The blade was discretized into ten unequal

segments, ranging in width from 0.125R to 0.025R, with the smaller elements
concentrated near the tip to capture the expected rapid design gradients in that region.
Unless otherwise noted in the text below, the sequential linear programming (SLP) option
was used, and all blades were considered rigid (no structural deformation allowed). As
described previously, while the structural model has been validated through the use of
idealized calculations and comparisons with analytical results, a calibration against
measured blade deflection has not yet been performed.

Several different combinations of design variables were selected for investigation.
These were: twist and tip sweep; twist and tip anhedral; and twist and variable chord. In
each ease, the twist was constrained to have twist changes between -8.5 and +1.5 degrees
on each segment. This 10 degree range was judged to give ample latitude for potentially
interesting design trends to appear without producing unrealistic configurations.

Twist and tip sweep: In this case, the outer 7% of the blade was allowed to sweep
up to +/-30 deg. The results of this case are summarized in Figures 7-2 to 7-4. Figure 7-
2 shows the history of the evolution of the hover Figure of Merit during the calculation,
as it rises to roughly 0.75 from its initial value of 0.721. Though the calculation dithers
considerably around the plateau, the bulk of the improvement comes in the f'trst fifteen
design optimization steps, during which time the tip sweep angle ramps up monotonically
from zero to the upper bound of 30 (:leg. The twist distribution undergoes dramatic
evolution during this period also, as shown in Figure 7-4. The distribution begins to
develop the twist bucket near the tip originally built in to the UH-60A. Some tendency to
increased twist over the inboard part of the blade is also observed. The overall tendency
of the evolution of the bound circulation distribution, though, is to flatten out the peak in
circulation seen near the tip and to produce a much more uniform distribution (Fig. 7-3).
As will be seen, this trend is evident in a wide variety of the cases studied to date.

Twist and tit) anhedral: This case produces results in many respects qualitatively
similar to the pre_ous exercise. The same diseretization of the blade was used, with ten
segments of decreasing span being used. Here the outer 17% of the blade was anowed to
deflect in anhedral, with the deflection limited to +/-15 deg. Again the twist distribution
was allowed to vary across the full span. Figure 7-5 shows the history of the Figure of
Merit as a function of number of optimization steps. Once again, a rapid rise is observed
during which the anhedral angle (tip droop) ramps rapidly to its prescribed limit. The
relatively large fluctuations observed in the Figure of Merit in steps 10-15 are due to
adjustments in the strength and position of the wake. These changes settle down to a
relatively stable plateau after steps 15-20. The predicted twist distribution associated
with the drooped tip is shown in Figure 7-7, showing a smaller twist bucket near the tip,
though again with larger twist angles toward the root. The resulting bound circulation
distribution at the termination of the calculation contains an anomalous trough that
appeared to be diminishing as the calculation plateaued around step 40 (Figure 7-6).

Twist and chord: Here, both the chord and the twist distribution were allowed to
vary. The chord was constrained to stay at its baseline value of 0.305 ft. over the inner
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40% of the span, while Outboard of this point increases of up to 33% over the baseline
were allowed; the minimum permissible chord in this region was set at 0.1 ft., or one
third of the baseline. In this case, the Figure of Merit increased from the baseline value

to just under 0.77 in thirty steps after which point the performance leveled off. The chord
distribution tapered gradually down to 0.18 ft. from the end of the fixed-chord segment,
while chords as large or larger than the baseline appeared in the immediate vicinity of the
tip. Figure 7-9 shows the twist distribution obtained for this ease, which is s_ar to the
other two cases just discussed. The tendency to a constant circulation distribution is
shared with the previous calculations. Further investigation will be required to determine
ff the increased chord at the planform tip is a consequence of the lattice discretization
used or if it represents a physically meaningful event.

These calculations indicate that representative baseline configurations can achieve
substantial performance increments of 3-4 points in Figure of Merit without excessive or
radical design departures. What is of more interest than the particular numerical results

achieved is the appearance of two trends in the design evolution: the tendency to
smoother, flatter bound circulation distributions and the appearance of features
resembling the twist bucket shown in Figure 7-1 near the rip. Some indications of the

desirability of flatter circulation distributions were present in the sample cases studied in
Reference 4, and the trend is reasonable in light of classical studies of the advantages of
uniform downwash fields. A fiat circulation distribution minimizes the strength of the
wake circulation and hence, in general, minimizes the induced power caused by wake
downwash on the blade.

The appearance of the twist bucket, though found empirically desirable by the
designers of the UH-60, is not a feature that emerges naturally from simple performance
analysis. It is noteworthy that the trend toward this particular design feature is driven
largely by the minimization of induced rather than profile power. Repeating the
calculations shown above with the profile power artificially set to zero - while obviously
leading to lower overall power - still yields twist distributions with the down-up
distribution near the tip characteristic of the bucket in Figure 7-1. A likely interpretation
is that the down-up twist distribution contributes to the leveling of the circulation

distribution by dropping the load near the peak and increasing it at the blade tip. A
similar phenomenon can be seen near the root.

7.1.2 Tiltrotor

The design optimization of a tiltrotor in hover presents a substantially different
challenge from the computations just described for more conventional low-twist baseline
designs. A representative case was examined to investigate possible design improvements
in baseline tiltrotor designs. The case considered here for illustration is an XV-15 rotor
with the same operating state and planform as those studied in Section 6. For this case,

optimization of twist and tip sweep was considered. The twist changes were effectively
unconstrained, while sweep was constrained to be zero except for the last 10% of the
blade, which could adopt a sweep of +/-30 deg. The thrust coefficient of the base case
was 0.0127, while the Figure of Merit was 0.789.

The evolution of the Figure of Merit is shown in Figure 7-10. The history is

notably uneven, but levels off around 0.8i5, corresponding to roughly a 3% power
reduction at constant thrust. The unevenness in the advance of the Figure of Merit is

attributable in part to oscillations in the tip sweep angle as it ramps up from zero to 30
degrees at step 30. The total performance increment for this case is relatively modest, but
this is not surprising if the initial and final bound circulation distributions are considered
(Figure 7-11). The initial bound circulation distribution here was already relatively
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uniform and left little latitude for subsequent modifications. It is noteworthy, though,
that the principal change made by the analysis is the introduction of an up-twist near the
blade tip (Figure 7-12). This feature is qualitatively similar to that found in the

calculations in Section 7.1. Its appearance in a configuration radically different from the
low-twist, four-bladed design just discussed suggests that the introduction of this type of
twist distribution may be a generically desirable design feature for a wide variety of
rotors.

7.2 Alternate Objective Functions

All of the cases considered to this point have been power minimizations at constant
thrust. Many other types of performance optimization problems are of practical interest,
and a wide range of objective functions can be accommodated, as discussed in Section 5.

A sample calculation was undertaken to demonstrate this capability; the problem involves
thrust maximization at constant power, corresponding conceptually to the task of
maximizing payload for a given power plant. The base case used here was the same UH-
60A-class rotor studied in Section 7.1.

Starting from the baseline thrust coefficient of 0.00664, the design was allowed to

evolve with the same constraints imposed in the twist and tip sweep optimization
described in Section 7.1. The resulting histories of thrust and Figure of Merit are shown
in Figures 7-13 and 7-14. A thrust increase of roughly 2.9% is achieved, with a

corresponding increase in Figure of Merit of approximately .038 as a consequence of the
constant power constraint. The spanwise loading and geometric twist (Figures 7-15 and
7-16) for this 'thrust optimized' design are similar to the distributions obtained in the
'power optimized' design discussed above.

As described in Section 5, many other candidate objective functions can be
accommodated within EHPIC/HERO, including weighted functions of thrust, power (and

its induced and profile components), Figure of Merit, and propulsive efficiency (_tCT/Cp)
for axial flight. The latter ease is now considered.

7.3 Axial Flight: Tiltrotor/Proprotor Case

Existing and proposed tiltrotor designs call for blade designs that can operate

efficiently at very high axial flow rates, typically as high as 450 fps. The discussion in
Section 6 included predictions of the performance of a V-22 tiltrotor in two cruise

conditions. Here, a study was undertaken to investigate the design trends when improved
designs were sought for a representative high speed case.

Adopting a strategy analogous to that described for conventional rotors in Section

7.1.1, the baseline configuration selected was a nonspecifie but representative tiltrotor
planform, having characteristics similar to the 0.658-scale V-22 rotor and the XV-15

rotor studied in Section 6. The design featured a three-bladed 3.81 m. (12.5 ft.) radius
rotor with a constant chord of 0.457 m. (1.5 ft.) yielding a solidity of 0.088 and -40
degrees of washout, assumed to be linearly distributed from the root to the tip. Given the
selected operating condition of 112.5 rrdsec (369 ft/sec or 219 kts), the advance ratio was
0.67 and the helical tip Mach number was 0.59. Each blade uses five NACA 64-class

airfoils across the span as in the XV-15 case discussed previously in Section 6.1.4.

The blade was initialized with 30 constant-width vortex quadrilaterals across the
span and one chordwise. Because of the dominance of free stream convection, a
relatively coarse wake model with a single turn of free wake on five free filaments is
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adequate. The span was discretized into ten segments outboard of the cutout, each
spanning 0.09R and having -4.0 degrees of washout.

The calculation was set up to maximize the propulsive efficiency at a constant
thrust coefficient of 0.0085, representing a relatively heavily loaded case. All of the
major design variables were allowed to participate in the optimization, including twist,
chord, sweep, and anhedral. The twist was again constrained to have a maximum delta of

between -8.5 and +1.5 across the segment. Chord was constrained not to decrease over
the fn'st 0.37R of the blade, but was allowed to taper down to 50% of the baseline chord
outboard of this. Sweep and anhedml angles were kept at 0 degrees inboard of 0.46R and
limited to +/-30 degrees outboard of this. The blades were assumed rigid, with no
structural deformation included.

The improvement in propulsive efficiency over 70 optimization steps is shown in
Figure 7-17, indicating that the propulsive efficiency has leveled off at roughly 0.933,
representing an increment of 0.023 over the baseline value. The bound circulation
distribution shown in Figure 7-18 indicates that the familiar trend to a more uniform load
distribution holds here as well. The geometric twist results ('Figure 7-19) show relatively
modest changes, though the up-twist near the tip characteristic of the hover results does
not appear.

The baseline and modified planforms are shown in Figures 7-20 and 7-21
respectively. Sweep, anhedral and chord distributions are shown in Figures 7-22 through
7-24. The axial flight case exhibits trends similar to those observed in the previous eases.
The sweep and chord distributions adjust in a manner that flattens out the circulation
distribution as much as possible which reduces the induced torque. This is best seen by
the shape of the optimized chord distribution which is actually an inverted image of the
circulation distribution. Though the sweep back will afford a small reduction in profile

torque due to compressibility effects, the primary effect for rotorcraft appears to be the
reduction of induced torque caused by reducing the circulation at the high speed tip. The
outboard anhedral also reduces induced torque, in part by pushing the tip vortex
downward away from the blade. Even though this latter effect is lessened in axial flight,
the optimization algorithm will still droop the tip ff any increment in performance is to be
gained. This fact is important to take into consideration when analyzing optimized
planforms; large excursions in sweep and anhedral often have a smaller effect on

performance than minor adjustments in the twist distribution. It is these design variables
having the least influence that will often change the most.

7.4 Computation Time

Design optimization calculations are inherently computationally intensive since
they inevitably involve repeated calls to the performance evaluation routines. As noted

earlier in this report, the formulation of the original EHPIC code helps to reduce this
burden since many of the influence coefficients needed to fill the tableau used to solve

the optimization problem are computed as a matter of course in the perforrnanee
evaluation. Nevertheless, the computational demands of EHPIC/HERO can become
substantial as the number of design degrees of freedom arc increased. The overall
objective of the present effort in this respect was to ensure that EHPIC/HERO was no
more CPU-intensive on 1992 computational hardware than was EHPIC Mod 0.0 on 1987

hardware. Since EHPIC has gained acceptance in the rotorcraft industry for routine
aerodynamic calculations, this was judged to be a reasonable criterion by which to gauge
the usefulness of EHPIC/HERO.

103



6

o

2
r..

Figure 7-17.

0.935

0.93

0.925

0.g2

O.glS

o.gl

i

t

0 10 20 30

!
i
1

, !
i

| !
l j

40 50 80 70 BO

Opflrt_zation Steps

Evolution of propulsive efficiency during the design optimization
of a tiltrotor in high speed axial flight.

Figure 7-18.

tXl
,c

Figure 7-19.

t-
o

-5

v

e-

<

0

E
0

200

150

100

50

0

-50

/
/

i
i :

i i t , ,• L z i

0.2 0.40 0.6 0.8 1
r/R

Initial (solid) and final (dashed) bound circulation for the tiltrotor
propulsive efficiency calculation.

8O

70

6O

5O

40

' ' ' ! I

30 ' ' ' '

0 0.2

t

I
l* z I

0.4 0.6
r/R

i
!
1
t
I
i

\,

0.8 1

Initial (solid) and final (dashed) geometric twist distributions for the
tiltrotor propulsive efficiency calculation.

i04



I FI]lnents $

a) Baseline

Figure 7-20.

I lr I l.=..ts S

b) Final

Top view of rotor configurations for the tiltrotor propulsive
efficiency maximization.

105



JJ /

a) Baseline

! /
!

/
!

/
.¢

$

b) Final

Figure 7-21. Oblique view of rotor configurations for the tiltrotor propulsive
efficiency maximization.

106



rr -0 1

t-
O

.i

O

"O
W

e-

_J

Figure 7-22.

0

0.1

0.2

0.3

0.4

0.5

[ r---_
i :_ !Lj--i f : . ' _ )

F---_ ' l i _, !! ! i i _ i iL........I.....i.......................I_'__,.....L.-___.,.....
i ' _1 i "

! ! I s ! ll_j'..w !....i.---!----_..............,_=-_-,-.-_--.....
"--!_"_i I_iti__,--- --,sw_eep' (nOne)( , _ fi i 4
"-"-i-. F.inall,. sweep", i' l ) "

i i [ ] i , 3 i i
...... _.........T..........i..........T....... i....... T....... i.........T....... i...... -

i . ' " i i i , = :
__.j___ L_..__ i .E ._ i l :.

0 0.2 0.4 0.6 0.8
x/R

Sweep distribution optimization of a tiltrotor in high speed axial flight.

n- -0.1

,- 0
O

,_ 0.1
O

0.2

"D 0.3W

,-- 0.4
"10

(_ 0.5¢I)
iI 0

) I I I, i /'._ i

i ;, i 7--- ..-
..................!......................I....................t ................ I................

• )
I_itial ar_hedral inone)

-" i =

.................i................. :............ i....................!...................
- ; ,
"-- i t

-- Einal an fiedral i i
...................!....................i............. !..................!..................

i i i i
. ; = !t i i =

.................... I ................... , ................... , ................... ._..................

0.2 0.4 0.6 0.8 1
x/R

Figure 7-23. Anhedral distribution optimization of a tihrotor in high speed axial flight.

n"

v

O
t-

O

0.5

0.4

0.3

0.2

0.1

0

-0.1
0

J ! ! I I J I
, I , l I !
i i i l ! i t

..... ' ''--"''----_--_rH_a_---÷enara---._ ..........i.........+.........i.....I

i i _ I i i i
I : $ " 1 '! ! l l i !

....N:-.Fifiiir_giSi_g ......T.........l..........T.........i.......
t i l t i i I

= z ' : t........ l......... _......... l........ ,i,..... i......... _......... l........ +...... I........
i _ i i i i i ! i
I ! I i ' I
I i | __ _ I i ! i m

..... i........ i .........)....... T....... i_-_-.i ....... i-----_ ..... h.-..-,,,'--J
i = , : ! : : I -I

: : : : : t : t -I

I i 1 i i i _ 1 i-_

0.2 0.4 0.6 0.8 1
x/R

Figure 7-24. Chord distribution optimization of a tihrotor in high speed axial flight.

107



This objective has been achieved. The sample calculations presented in this section
typically run 6-10 CPU hours on an Iris 340 workstation. These run times are
comparable to those required by complex EHPIC Mod 0.0 runs on the MicroVAX IT that
was originally used for EHPIC development during 1986 and 1987. Indeed, the present
calculations were relatively conservative, in that they did not take full advantage of the
options available to bypass updates of the optimization tableau. Each of the calculations
shown in this section wcrc run with KOPT=I, NFRAC=2, and KWIKN=2 (scc Section 5

or Reference 12 for definitions of these parameters), and it is quite likely that additional

speed-up could have been achieved with larger steps between updates. Even so,
additional effort to improve computational efficiency would nonetheless bc desirable.
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8. SUMMARY

The primary purpose of this report has been to document the development and
testing of the EHPIC./HERO rotor performance optimization code. EI-IPIC/HERO has
been designed to retain the strengths of the original EHPIC free wake hover performance
code while both extending its capabilities and adding wholly new features to compute
structural deflection, high-resolution rotor wake flows, and, most importantly, optimized

rotor designs for improved performance.

The major refinements to the basic hover model include the addition of a lift stall
model, the inclusion of scan planes for induced velocity calculations, the expansion of
previous table look-up routines to support structural deflection calculations, and the
revision of blade/wake coupling to facilitate both optimization and high-resolution rotor
wake computations. The new stall model produces the correct qualitative trends for
highly loaded rotors. The results of sample calculations of time-averaged induced
velocities using the new scan plane capability have likewise been promising.

Implementation of a high-resolution tip wake calculation option has also been successful,
and testing on representative rotor configurations has demonstrated the eode's ability to
capture the structure of the roUing-up wake from blades with shallow bound circulation
gradients near the tip. Finally, the revised approach to coupling the blade and the wake
described in Section 2 has proved to be robust, as was found in the long performance
optimization runs - typically involving large changes in bound circulation - described in
Section 6.

The formulation and implementation of a finite clement model of the blade
structure has been described. The present model uses 14-d.o.f beam/rod elements to
compute bending, torsional, axial, and in-plane deflection due to blade rotation and static
aerodynamic loading. Test calculations on idealized model problems have been
successful and correlation with measured deflections is awaiting full analysis of recently

acquired data on the UH-60A model rotor hover tests.

A combined linear programming/quadratic programming (LP/QP) approach to
design optimization has been formulated and implemented. The optimization analysis
accommodates all of the major planform variables as well as objective functions

involving combinations of thrust, power (and its components), propulsive efficiency, or
hover Figure of Merit. User-imposed constraints can be imposed on these variables in
addition to performance targets based on the selected objective functions. Sequential
linear programming (SLP) is the basic mode of operation of the analysis, though an SQP
option exists to find optimal solutions that exist away from the constraint boundaries.
Limited updating of the tableau may be invoked to reduce CPU requirements in cases
where the design evolution is well-behaved.

A limited correlation study on helicopter rotors and tiltrotors in hover and axial
flight has demonstrated that good accuracy can be achieved in integrated performance
prediction using the EHPIC/HERO code. Demonstration calculations of the performance
optimizer have also been carried out, using twist, chord, sweep, and anhedral in various
combinations as design variables. In the eases examined, the optimum design obtained

was a strong function of the constraints selected for that particular case (a well
established feature of design optimization in general). The motivation for the constraint
choices was to exercise the major features of the code in eases of practical interest; no
claim is made as to the comprehensiveness of the tests undertaken here. However, two
broad, interrelated trends have been identified that appear to constitute generally desirable

design strategies. One of these is a manifestation of a generally well-understood feature
of hover performance analysis: uniform distributions of bound circulation contribute to
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the minimization of rotor power for a given thrust. A qualitatively similar principle
appears to be at work in both the hover thrust maximization problems studied and the
sample calculations in high speed axial flight.

The second result is related to the fh'sL Results from a wide variety of cases
suggest that the addition of the 'down-up' twist or 'twist bucket' implemented on the UH-
60A main rotor is a generally advantageous feature of blade design. The trend to this
type of feature emerged in hovering rotor cases for combinations of twist with chord,
sweep, and anhedral and for both low-twist, four-bladed rotors and high-twist, three-
bladed tihrotors. Preliminary calculations indicate this design feature evolves in power
minimization problems even in cases where profile drag is excluded, suggesting that it is
driven by the sensitivity of induced power to the wake-induced velocity field and the
imperative to produce more uniform circulation distributions. Additional computational
studies will be carried out to confirm this observation and to identify analogous strategies
for other design variables.

The results and computational experience of work to date on this analysis have
also pointed out the need for additional effort in a variety of areas. The full exploitation
of preliminary work on inclusion of models of vortex/tip loading using ANM would aid
the resolution of vortex-induced loading. Further reductions in CPU time can be realized
by exploiting existing simplifications available in the present optimization analysis. The
optimized designs obtained with rigid blade analyses should be repeated with structural
deflection in place to examine the effect on the solutions obtained to date. The
preliminary work done on including constraints on the design from forward flight
conditions should be extended to enhance the realism of the hover-optimized designs.
Finally, extensions to include airfoil, blade thickness effects, and structural tailoring in
the design optimization should be considered to supplement the already substantial
capabilities of EHPIC/HERO.
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APPENDIX A

DESCRIPTION OF THE SIMPLEX ALGORITHM

A brief summary of some of the features in the present implemcntation of the simplex

algorithmisgiven here. Familiaritywith the fundamental terminology and stepsin an LP

algorithm ispresumed. For a review of the basicmethod see References 52 and 56. Wc

shall concern ourselves here primarily with the extensions require,d for implicit

incorporationof upper and lower bounds upon the statevariables,AX. and for solving

QP problems. In the following,we referto those components of X which are not at one

of theirspecifiedbounds as basicvariables. The remaining entriesform the non-basic
Set.

The simplex algorithmemployed here isa highlyrevisedand extended versionof the

routinegiven inReference 52. The routineseeks to solvethe LP problem:

Min j=j0 + cTAx (A-la)

subject

where

to the constraints:

gj(X) +VgjG_ A_ < 0

gk_---) + Vgk_--.) A_ = 0

AXi_>O

--¢

--,_b3=[A3]

, gj(X_)< o
(A-Ib)

, gj(X) > 0

(A-lc)

(A-id)

b 1--{gj(_) } ;

and thematrices,

b2= {gj(X)} ; b3 = { gk(X) * sign{gk(2_)})}

(A-Ic)

[AI]=Vgj(_) ; [A2]f-Vgj(_k); [A3]=-Vgk(_)*sign{Vgk(_)}
(A-lf)

The b i are defined so as to have all entries > 0. The optimal solution is attained in two

stages. In the first stage a feasible solution AX satisfying the imposed constraints is

obtained by the introduction of slack variables and the construction of an auxiliary cost

function. At the end of this stage, the actual optimization process is performed and AX

varied via a sequence of pivot operations so that during each operation the cost is
reduced. The process continues until no further reduction in cost is possible and thus

returns with the optimal vector, AX.

A. 1 Slack Variablesand Determination of aFeasible Solution

The standard linearprogramming problem is posed in terms of a set of equaIiry

constraintsand the requirement thatall Axi_O. Thus the inequality constraintsarc

transformed intoequalityconstraintsby theintroductionof slackvariables,sI and _:

bI= [All A_ + sI ; ]22 = [A2]A_- s2 (A-2a)
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IiI, s2"20 (A-2b)

Observe that the first constraint, hi - [A1] AX + sl, is easy to satisfy by setting, A_--0,

and Sl=b 1. This is due to the positivity of the components of hi. This is not generally the

case fortheremaining inequalitiesassociatedwith 122and 113.Thus, in orderto determine
a feasiblesolution the constraintparameters, z2 and z3, are introduced to obtain the

augmented setof constraints:

bl = [A1] A2_ + Sl ; k2 = [A2.] A_ - s2 + 1,2 ; 123= [A3] AX + z 3 (A-3a)

Axi_>0 ; Sl, S2_>0 ; z2, z3_>0 (A-3b)

Specification of an initial solution to Eqs. (A-3) is now rendered trivial and is given by:

AX=0 ; s1=bl; ; s3=0 ; ra=l ; z3=I 3 (A-4)

Since the 12i_>0, the _) and gi_>0. Furthermore, {_1, -z2, z3 } forms the set of basic (non-

zero) variables and {A2_, s2, s3} forms the set of non-basic variables. One now has a set

of equality constraints, Eq. (A-3a), subject to conditions, Eq. (A-3b) which in conjunction
with an appropriate linear cost function, define a linear programming problem. To obtain
a feasible solution to the original problem, Eqs. (A-I), we must first remove the
constraints variables,/a, i.e., conduct pivot operations aimed at reducing Z.i--0, or
equivalently causing the/a to leave the basic set. Thus, the appropriate cost function to
be minimized ischosen as the sum of the components ofz 2 and z3:

fz "" Z z2i + Z z3i
m2 m3

(A-5)

where m2 and m3 are the dimensions of the vectors 7-2 and z 3 or equivalently the

dimensions of b 2 and 123 respectively. The simplex machinery involving pivot selection

and pivoting operations may now be applied to this minimization problem. If the
minimizing solution subject to the constraints satisfies min{fz}=0 then this implies that

the z2i and z3i arc zero and the corresponding original constraints are satisfied, i.e., _ =

[A2] A_ - s 2, and b 3 - [A3] A_. The simplex pivoting strategy guarantees that the other

constraints involving bl and the positivity requirements upon the variables is maintained.
If min{fz}>0, then one or more of the z2ior z3i are positive and cannot be reduced further

implying that the corresponding eonslraint is not satisfied. The initial value of fz

fz--Z b2i+ Zb3i
niP. m3

(A-6)

so that the progress of the simplex algorithm may be monitored by tracking the value of

fz through the sequence of simplex iterations. The function, fz, must be expressed in
terms of the non-basic variables which is easily accomplished by referring to the
associated constraints:

z2=b2 - [A2]A +s2 ; z_3= -[A3]AX_

so that:

(A-7)
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'z: b2i' b3i/  A21" IA311 x' s2im2
This is conveniently summarized in the form of a tableau:

Table A- 1

AX_ _2

cT

[o]
jo

_,J,,, [A1]i

b2 [A.?.]i ,.

]23 [A_]i
fz0 m2 m3

Z[A2]ki + Z[A3]ki
k k

-Jim2]

[0]

Sl _2 a3

[Iml] [0]
[0j [Im 
[0] [0]
oT oT

[o]
[o]

oT

(A-8)

Basic Variables

Sl

Z2

Z3

where, fz0 = _ b2i + _ b3i (A-9)

m2 m3

and _m denotes the vector of dimension m with unit entries, and Jim] is the unit matrix of

order m. The bottom row may be considered as an additional equali W constraint as far as
the simplex pivoting operations are concerned. The last three columns in the table
correspond to the basic variables and form a unit matrix of dimension (ml+m2+m3).
Since pivoting operations essentially permute the unit column vectors within the tableau
it is only necessary to store the remaining tableau in computer memory and keep track of
the basic and non-basic variables using index lists. Thus the last three columns are not
actually stored in the array used in EHPIC/HERO, which leads to an m by m reduction in
memory requirements with m being the total number of constraints. Furthermore, since

the column vectors in the tableau for s 2 are identical to those for z2 except for sign, and
the pivoting operations affect both columns in the same way, an m by m2 reduction in
tableau space is effected by tracking these also with an index list, due consideration being

made for sign. Procedurally, when a given component z2i leaves the basic set (i.e.

becomes zero), it is replaced by the associated s2i variable, and the tableau modified by

reversing the sign of the associated column vector. Thus, z2i is eliminated from the set of
variables under consideration. When a component z3i leaves the basic set it becomes a
non-basic variable identified with column, j, in the tableau. Since z3i is not used in

subsequent computations, the column is henceforth omitted from consideration as a pivot
column.

A.2 Implementation of Upper and Lower Bounds

In the above discussiona lower bound was implicitlyimposed upon the Axi by the

positivityrequirements,AxiL>0.This can easilybe extended to any setof lower bounds, li,

by simple lineartransformationof the definingvariables.To impose upper bounds upon

A_ the pivoting strategyismodified following the procedures outlined by Luenbcrgcr,
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Reference 56. Whereas in the original algorithm, the variables axe referred to their lower
(zero) bounds, each variable can now also be referred relative to its upper bound,
UBND(i). An integer array, IBND(i) is employed to indicate which bound the variable xi
is referred to. The pivot selection procedure is now as follows. The upper bound for

each variable, xi, is set by the user (design variables, d) or elsewhere in the code (_, _.

The upper bound for each of the lib sv,/,2, and/,3 is arbitrarily set to a large number. The
same is mm of the Lagrange multipliers when conducting QP problems.

1) The non-basic variable to be pivoted, x_j, is determined. This is done in the same
manner as in the single bounded case and is accomplished by searching the row

corresponding to fz (when finding a feasible solution) or J (when determining the optimal
solution) and finding the column, j, with minimum entry. If this value is positive then no
further improvement is possible. Otherwise we proceed with the step 2).

2) There are now threepossiblemoves a)The non-basicvariable,xj,simply goes to

itsopposite bound; b) xientersthe basic setby being pivoted with a basic variable,xi,

and xireturnsto itsold bound (thisisthe usual pivotingprocedure for the singlebound

case);c) same as b) except thatthe variable xi is brought to itsopposite bound. To
determine both the actiontaken and for cases b) and c) which basicvariable,xi,isto bc

pivoted determine the minimum of:

a)UBND(i)

b) rain ai0/aij
aij>0

c) rain (aio-UBND(i) )/aij
aij<O

where aijis the entry in the above tablecorresponding to constraint,i,and nonbasic
variable,.j,and ai0isthe leftmostcolumn entryof constraint,i.

3) Depending upon the minimum value in step2),execute the operationsassociated

with a),b),or c). For detailsof the pivot operation see Reference 56 noting thatthisis

implemented upon the compact storagescheme of Reference 58.

A.3 Extension toQP Problems

Each of the quadraticprogramming problems issolved by a modified version of the

simplex algorithm. The Kuhn-Tucker conditionsarc simply linearequalityconditions
and if these are satisfied together with the original imposed constraints then one has the

solution to the QP problem. However, the difficulty lies in meeting the criterion, Eq. (5-
14b,c), which forms a nonlinear constraint. The solution approach follows that of Wolfe
(Reference 59) and involves a two stage procedure as in the LP case. In the fast stage a
feasible solution satisfying the original constraints is derived in an entirely analogous
manner as in LP. Starting with the feasible solution thus obtained, the additional Kuhn-
Tucker equality constraints are then imposed and a new feasible solution satisfying the
entire set of constraints is sought. The nonlinear condition, Eq. (5-14b,c), is implicitly

satisfied by modifying the logic used in selecting the pivot element in the simplex

pivoting process.

The Kuhn-Tucker criteria augment the original set of imposed constraints by n further

equality constraints together with the orthogonality requirements upon pairs of Lagrange
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multipliers and constraints. The equality constraints fall directly into the LP capability of
the simplex algorithm. It is the enforcement of orthogonality between certain pairs of
variables necessitates modifications of the method. Recalling the Kuhn-Tucker

conditions, Eqs. (5-14):

_tli (Axi-Ali) = 0 ; ]Z2i (Aui-Axi) = 0 ; _1i,/_2i _ 0 , (i=l,...,n)

(A-10b)

_j sj = 0 ; _j _ 0 0=1 .... xai) (A-10c)

_: unbounded (k=mi+l,...,me) (A-10d)

where {sj }={Sl, _} are the slack variables associated with the inequality constraints, and

[A_] = IV gk(X)] y and is equivalent to A3 y except for the sign reordering defined by

Eq. (A-lb). There are n new equality constraints and m+2n new Lagrange multiplier

variables. The condition 2j sj = 0 is equivalent to the stipulation that Xj can only enter

basic set ff si is zero implying that the corresponding inequality constraint is active (i.e.,
satisfied exa&ly).

The Lag'range multipliers associated with the imposed equality constraints is
unbounded and so can be eliminated from the set of variables by solving for them directly

using m 3 of the n Kuhn-Tucker equality constraints. The matrix, [xT] is partitioned,

(A-11)

where the rank of [AT3] is m3. The rows of [AT3]

m =u= won Then,
are chosen by searching for

_ir =-[Am3]-T{vJ(X) + [B]AX + [A T -AT]_j + (/./.2-/Zl)}m3

(A-12)

where the subscript (')m3 refers to the row partitions of the argument corresponding to

those of [A_m_l" These equations may now be dropped from the I, uhn-Tuck=
L J

conditions. The remaining n-m3 Kuhn-Tucker equations ate modified by substituting for

_,. The reduced set of n-m3 Kuhn-Tucker conditions then takes the form:

0=-_+[Q]A_ + [R.]_ + T(JJ,2-R1 ) (A-13a)
ci > 0 (A- 13b)
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togetherwith the originalorthogonalityrequirements,Eqs. (A-10b,c). The matrices [Q],

[R], and [1"] arc obtained by substituting for hk in the remaining n-m3 rows of the original

Kuhn-Tucker equations, Eq. (A-10a). The condition ci > 0 is cffccted by reversing the

sign of each entry in row i if necessary.

In the first stage, the add/rlonal vectors,/,2 and/,3, are temporarily introduced as
before so that an initial feasible vector satisfying all augmented imposed constraints,

Eq. (A-3), can be found. Similarly, the vector, _ is introduced so that the Kuhn-Tucker
equality constraints become:

c=[Q] A_ + [R] 2.j+ T(g2-/g I) + gKT (A-14a)

Z_KT> 0 (A-14b)

A feasiblesolutionvectorsatisfyingallconstraintsand the orthogonalityrequirements is

obtained by simply settingallof theLagrange multiplierstozero,_ and initializing

the remaining variablesas inEqs. (A-.4).The resultingtableaureads:

Table A-2

A_ s2

[Al]i

i[A2]i

[A3]i

m2 m3

Z[A2]ki + Z[A3]ki

k. k

[0]
"'_[ira2]

[o]
[o]

-{Cm2}

K1 t12

[03 [0] [03
[o] _ [o] _ _[o]-
[0] [0] [0]
JR] [-T] m

Basic Variables

.... s|

__ _2 •

ZKT

where the finalrow isformed in exactly the same manner as in the LP case. The last

threeblocks of the finalrow arc not used in stage I. During thisfn'ststage,theLagrange

multipliersremain at theirlower bounds and are skipped when determining the pivot

columns. Therefore, the orthogonality requirements imposed by the Kuhn-Tucker

conditionsismaintained. Note however, thatthe pivotoperationsbasicallyadd multiples

of the pivot row to allof the other rows so thatthe matrix [Q] will be modified. The

matrices [R] and [T] remain unaffected since all other entries in the associated column
blocks are zero.

From the above table it is clear that the columns pertaining to _tli and _t2i arc identical

except for the sign. Also, it is clear that it is impossible to have both l.tli and I.t2i both

belong in the basic set since that would imply that the associated x i variable is

simultaneously at its upper and lower bound. The row manipulations taking place in a

pivoting operation modify the columns associated _tli affect I.t2i in identical manners.

Thus it is not necessary to represent both variables in memory since knowledge of one of
the columns implies the same for the other, In practice, an integer array is used to

ascertain which of the variables, gli or I.t2i is currently represented in the tableau. When

a column pertaining to a I.qi or 1_2i variable is considered during the pivot selection tests,
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it is examined twice, fn'st with the unaltered column and then again with all entries in the
column reversed in sign. Thus an n by n reduction in memory space is realized.

The second stage tackles the Kuhn-Tucker equality constraints. Specifically, a
feasible solution satisfying these equality constraints is sought. In an analogous fashion
to the construction of fz in Eq. (A-8) which was used to obtain a feasible solution for the
imposed constraints, an auxiliary linear cost function is created,

n-m3

Z(z r)i
i=l

(A-15)

As before, this is expressed in terms of the non-basic variables by substituting for the
ggT. If one examines the tableau, Table A-l, and the expression for fz in Eq. (A-8), it is
sccn that the constant term, fz0, is simply the column sum of the left-most column with

the summation range extending over those rows corresponding to the z2i and z3i.
Similarly, the factor associated with a given non-basic variable, xj, in the expression for
fzcan bc obtained simply by summing the entriesin the column above itover the same

summation range. Or,

ml+m2+m3

(az) j = _aij (j=0, n+ml) (A-16)
i=ml+l

where a, is the row in the tableau associatedwith fz,j=0 corresponds to the leftmost

column, i=0 corresponds the row associated with J, and j=n+ml corresponds to the

righmost non-basic variable,in thiscase (Sl)ml. The same procedure iscarriedout for

the fKT with the row entriesbeing computed as a simple sum of the associatedcolumn

entries.The range of summation now extends over the n-m3 rows identifiedwith the

transformed Kuhn-Tuckcr conditions (i.e.,subsequent to the elimifiationof m3 rows

when solving for the unbounded _,_).Furthermore, the column range,j,isextended to

n+m1+n+mi so that these sums arc also formed for the remaining n+mi Lagrange

multiplierswhich atthispoint arcstillnon-basicvariablessetto theirinitialzero values.

fz ffim_2b2i+m_3b3i-(m_2[A2]+m_3[A3]l AX+Zs2im2
(A-17)

At the end of the fn'st stage,the tableauhas the form:

Table A-3

C*

Non-basic entries _i K1 M_.

of { A__,Sl ,ft2}

[0]

A2

^;i
Qi*

[o]

R

[0]

-T T

Basic Variables

Basic entries

{ }

ZKT
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fKT0 I m+n-m3Ek=m+l

ii ,i

Q_j _ Rkj -T _ Tkj
k=m+l k=m+l

re+n-m3

kfm+l

where (.)* denotes that the entries have been altered due to row manipulations during

pivoting. Here, the scalar,

re+n-m3

f 0: E 4
k=m+l

(A-18)

The second stage then is concerned with minimizing fKT. If the optimal value of fKT=0,

then by implication all the ZKT=0 thus verifying that a feasible solution to the complete
problem of imposed constraints plus the Kuhn-Tucker conditions, or equivalently, the
optimizing vector of the QP problem, has been found. This presumes that the
orthogonality conditions, Eqs. (A-10b,c), are maintained throughout, and this must be
explicitly enforced in the second phase. To this end, a battery of logical tests is
conducted during selection of the pivot column. For each candidate column, the
associated non-basic variable together with its set of conjugate variables (i.e. the second

in the pair of variables that define the orthogonality requirement) is found. For any xj the

set of conjugate variables is i.tlj and _t2j; for slack variable, Slj or s2j, the conjugate

variable is the corresponding entry of hi; etc. The bookkeeping is somewhat involved
due to the compact storage of the simplex tableau and the implicit incorporation of lower

and upper bounds upon the variables, but in essence the associated conjugate variables
are tested for membership in the basic set. If the membership structure is found to be
incompatible with the orthogonality stipulations, Eqs. (A-10b,c), then that column is
skipped. If no column can be found that both satisfies the orthogonality conditions and
decreases the auxiliary cost, rio', then the possibility of a non-basic variable pivoting with
one of its own conjugate variables is examined. For example, one could pivot the non-

basic xj component with its corresponding _tl'j assuming, that. tt]'j presently belongs to the
basic set. Such situations arise rarely in pracuce, and pwot columns satisfying the

orthogonality conditions are usually available.
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